Select the correct answer.

What is the value of [tex] g(-4) [/tex]?

[tex]
g(x)=\left\{\begin{array}{ll}
\sqrt[3]{x+5}, & x \leq -4 \\
-x^2 + 11, & x \ \textgreater \ -4
\end{array}\right.
[/tex]

A. 1
B. -5
C. 27
D. -1



Answer :

To find the value of [tex]\( g(-4) \)[/tex], we need to determine which part of the piecewise function [tex]\( g(x) \)[/tex] we should use. The function is defined as follows:

[tex]\[ g(x) = \begin{cases} \sqrt[3]{x+5}, & \text{if } x \leq -4 \\ -x^2 + 11, & \text{if } x > -4 \end{cases} \][/tex]

Since we are asked to find [tex]\( g(-4) \)[/tex] and [tex]\(-4 \leq -4\)[/tex], we use the first part of the piecewise function:

[tex]\[ g(x) = \sqrt[3]{x + 5} \][/tex]

Now, substitute [tex]\( x = -4 \)[/tex] into this equation:

[tex]\[ g(-4) = \sqrt[3]{-4 + 5} \][/tex]

Simplify the expression inside the cube root:

[tex]\[ -4 + 5 = 1 \][/tex]

So, we have:

[tex]\[ g(-4) = \sqrt[3]{1} \][/tex]

Since the cube root of 1 is 1:

[tex]\[ g(-4) = 1 \][/tex]

Therefore, the correct answer is:

A. 1