Select the correct answer.

If [tex]f(x) = \sqrt{x} - x[/tex] and [tex]g(x) = 2x^3 - \sqrt{x} - x[/tex], find [tex]f(x) - g(x)[/tex].

A. [tex]2x^3 - 2x + 2\sqrt{x}[/tex]

B. [tex]-2x^3 + 2\sqrt{x}[/tex]

C. [tex]-2x^3 - 2x[/tex]

D. [tex]-2x^3 - 2x - 2\sqrt{x}[/tex]



Answer :

To find [tex]\( f(x) - g(x) \)[/tex] where [tex]\( f(x) = \sqrt{x} - x \)[/tex] and [tex]\( g(x) = 2x^3 - \sqrt{x} - x \)[/tex], we can proceed as follows:

1. Express [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] clearly:
- [tex]\( f(x) = \sqrt{x} - x \)[/tex]
- [tex]\( g(x) = 2x^3 - \sqrt{x} - x \)[/tex]

2. Form the expression [tex]\( f(x) - g(x) \)[/tex]:
[tex]\[ f(x) - g(x) = (\sqrt{x} - x) - (2x^3 - \sqrt{x} - x) \][/tex]

3. Distribute the minus sign across the [tex]\( g(x) \)[/tex] terms:
[tex]\[ f(x) - g(x) = \sqrt{x} - x - 2x^3 + \sqrt{x} + x \][/tex]

4. Combine like terms:
- Combine the [tex]\(\sqrt{x}\)[/tex] terms:
[tex]\[ \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
- Combine the [tex]\(x\)[/tex] terms:
[tex]\[ -x + x = 0 \][/tex]
- The [tex]\(2x^3\)[/tex] term remains as it is:
[tex]\[ -2x^3 \][/tex]

5. Write the simplified expression:
[tex]\[ 2\sqrt{x} - 2x^3 \][/tex]

So, the expression [tex]\( f(x) - g(x) \)[/tex] simplifies to:

[tex]\[ 2\sqrt{x} - 2x^3 \][/tex]

From the provided choices:

A. [tex]\( 2x^3 - 2x + 2\sqrt{x} \)[/tex]
B. [tex]\( -2x^3 + 2\sqrt{x} \)[/tex]
C. [tex]\( -2x^3 - 2x \)[/tex]
D. [tex]\( -2x^3 - 2x - 2\sqrt{x} \)[/tex]

The correct choice is:

B. [tex]\( -2x^3 + 2\sqrt{x} \)[/tex]

Therefore, [tex]\( f(x) - g(x) = 2\sqrt{x} - 2x^3 \)[/tex].

\boxed{B}