Polygon [tex]$ABCD$[/tex] is drawn with vertices at [tex]$A(1,5)$[/tex], [tex][tex]$B(1,0)$[/tex][/tex], [tex]$C(-1,-1)$[/tex], and [tex]$D(-4,2)$[/tex]. Determine the coordinates of [tex][tex]$B^{\prime}$[/tex][/tex] if the preimage is rotated [tex]180^{\circ}[/tex] counterclockwise.

A. [tex]B^{\prime}(0,-1)[/tex]

B. [tex]B^{\prime}(0,1)[/tex]

C. [tex]B^{\prime}(-1,0)[/tex]

D. [tex]B^{\prime}(1,0)[/tex]



Answer :

To determine the coordinates of the image vertices [tex]\( B' \)[/tex] when the preimage vertex [tex]\( B \)[/tex] is rotated 180 degrees counterclockwise, we can follow these steps:

1. Identify the coordinates of the preimage point [tex]\( B \)[/tex]: The given coordinates for point [tex]\( B \)[/tex] are [tex]\( B(1, 0) \)[/tex].

2. Know the rotation rule: When a point [tex]\((x, y)\)[/tex] is rotated 180 degrees counterclockwise around the origin, the new coordinates [tex]\((x', y')\)[/tex] are given by:
[tex]\[ (x, y) \rightarrow (-x, -y) \][/tex]

3. Apply the rotation rule to the coordinates of point [tex]\( B \)[/tex]:
- The original coordinates of [tex]\( B \)[/tex] are [tex]\( B(1, 0) \)[/tex].
- Applying the 180-degree rotation transformation:
[tex]\[ (1, 0) \rightarrow (-1, -0) \][/tex]

4. Simplify the result: The coordinate [tex]\( -0 \)[/tex] is equivalent to [tex]\( 0 \)[/tex]. So the new coordinates of [tex]\( B' \)[/tex] after 180-degree rotation are:
[tex]\[ B'( -1, 0) \][/tex]

Therefore, the image vertex of [tex]\( B' \)[/tex] after a 180-degree counterclockwise rotation is [tex]\( \boxed{(-1, 0)} \)[/tex].