Solve [tex]3 - \frac{x}{2} \geq 12[/tex]

A. [tex]x \leq -30[/tex]
B. [tex]x \leq -18[/tex]
C. [tex]x \geq -30[/tex]
D. [tex]x \geq -18[/tex]



Answer :

To solve the inequality [tex]\(3 - \frac{x}{2} \geq 12\)[/tex], follow these steps:

1. Isolate the term involving [tex]\(x\)[/tex]:

Begin by moving the constant term to the other side of the inequality:
[tex]\[ 3 - \frac{x}{2} \geq 12 \][/tex]

Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 3 - \frac{x}{2} - 3 \geq 12 - 3 \][/tex]
Simplifying this, we get:
[tex]\[ - \frac{x}{2} \geq 9 \][/tex]

2. Eliminate the fraction:

Since [tex]\(- \frac{x}{2}\)[/tex] means [tex]\(\frac{-x}{2}\)[/tex], multiply both sides of the inequality by -2 to clear the fraction. Remember, when you multiply or divide an inequality by a negative number, the direction of the inequality reverses:
[tex]\[ (-2) \cdot -\frac{x}{2} \leq 9 \cdot (-2) \][/tex]
Simplifying this, we get:
[tex]\[ x \leq -18 \][/tex]

So the solution to the inequality [tex]\(3 - \frac{x}{2} \geq 12\)[/tex] is [tex]\(x \leq -18\)[/tex].

Therefore, the correct choice is:

B. [tex]\(x \leq -18\)[/tex]