Solve [tex]$3-\frac{x}{2} \geq 12$[/tex]

A. [tex]$x \leq -30$[/tex]
B. [tex][tex]$x \leq -18$[/tex][/tex]
C. [tex]$x \geq -30$[/tex]
D. [tex]$x \geq -18$[/tex]



Answer :

To solve the inequality [tex]\( 3 - \frac{x}{2} \geq 12 \)[/tex], follow these steps:

1. Isolate the variable term:

Start by isolating the term containing [tex]\( x \)[/tex] on one side of the inequality. Subtract 3 from both sides:
[tex]\[ 3 - \frac{x}{2} - 3 \geq 12 - 3 \][/tex]
Simplifying, we get:
[tex]\[ -\frac{x}{2} \geq 9 \][/tex]

2. Eliminate the fraction:

To eliminate the fraction, multiply both sides of the inequality by -2. Remember, when you multiply or divide both sides of an inequality by a negative number, the direction of the inequality changes:
[tex]\[ -2 \cdot \left(-\frac{x}{2}\right) \leq -2 \cdot 9 \][/tex]
Simplifying, we get:
[tex]\[ x \leq -18 \][/tex]

So, the solution to the inequality [tex]\( 3 - \frac{x}{2} \geq 12 \)[/tex] is:
[tex]\[ x \leq -18 \][/tex]

Thus, the correct answer is:

B. [tex]\( x \leq -18 \)[/tex]