(Hint: Type an exact answer.)

Given the approximations [tex]\log_{10} 2 = 0.3010[/tex] and [tex]\log_{10} 3 = 0.4771[/tex], find [tex]\log_{10} 36^{1/3}[/tex] without using a calculator.



Answer :

Certainly! Let's work through the steps to find [tex]\(\log_{10} 36^{1/3}\)[/tex] given the approximations [tex]\(\log_{10} 2 = 0.3010\)[/tex] and [tex]\(\log_{10} 3 = 0.4771\)[/tex].

We need to compute [tex]\(\log_{10} 36^{1/3}\)[/tex]. Let's break it down step by step using properties of logarithms.

### Step 1: Transform the original expression using logarithm properties.

We know:
[tex]\[ \log_{10} 36^{1/3} = \frac{1}{3} \log_{10} 36 \][/tex]

So we need to find [tex]\(\log_{10} 36\)[/tex] first.

### Step 2: Express 36 in terms of its factors.

The number 36 can be written as:
[tex]\[ 36 = 6^2 \][/tex]

Using the logarithm property [tex]\(\log_{10} (a^b) = b \log_{10} a\)[/tex], we get:
[tex]\[ \log_{10} 36 = \log_{10} 6^2 = 2 \log_{10} 6 \][/tex]

### Step 3: Express 6 in terms of its prime factors.

The number 6 can be expressed as:
[tex]\[ 6 = 2 \times 3 \][/tex]

Using the logarithm property [tex]\(\log_{10} (ab) = \log_{10} a + \log_{10} b\)[/tex], we get:
[tex]\[ \log_{10} 6 = \log_{10} (2 \times 3) = \log_{10} 2 + \log_{10} 3 \][/tex]

### Step 4: Substitute the given values into the expression.

We know:
[tex]\[ \log_{10} 2 = 0.3010 \quad \text{and} \quad \log_{10} 3 = 0.4771 \][/tex]

So,
[tex]\[ \log_{10} 6 = 0.3010 + 0.4771 = 0.7781 \][/tex]

### Step 5: Substitute back to find [tex]\(\log_{10} 36\)[/tex].

From Step 2, we have:
[tex]\[ \log_{10} 36 = 2 \log_{10} 6 = 2 \times 0.7781 = 1.5562 \][/tex]

### Step 6: Finally, find [tex]\(\log_{10} 36^{1/3}\)[/tex].

From Step 1, we need:
[tex]\[ \log_{10} 36^{1/3} = \frac{1}{3} \log_{10} 36 = \frac{1}{3} \times 1.5562 = 0.5187\overline{3} \][/tex]

Thus, the logarithm [tex]\(\log_{10} 36^{1/3}\)[/tex] is approximately [tex]\(0.5187\overline{3}\)[/tex].