## Answer :

1.

**Look at the polynomial and split it into two groups**:

[tex]\[ \left(10x^3 + 3x^2\right) + \left(-20x - 6\right) \][/tex]

2.

**Factor out the common factor from each group**:

- In the first group [tex]\(\left(10x^3 + 3x^2\right)\)[/tex], the common factor is [tex]\(x^2\)[/tex]:

[tex]\[ 10x^3 + 3x^2 = x^2(10x + 3) \][/tex]

- In the second group [tex]\(\left(-20x - 6\right)\)[/tex], the common factor is [tex]\(-2\)[/tex]:

[tex]\[ -20x - 6 = -2(10x + 3) \][/tex]

3.

**Write the polynomial grouping with the common factors factored out**:

[tex]\[ x^2(10x + 3) - 2(10x + 3) \][/tex]

Given the choices provided:

1. [tex]\(x^2\)[/tex] and [tex]\(-2x\)[/tex]

2. [tex]\(2x^2\)[/tex] and [tex]\(-2x\)[/tex]

3. [tex]\(x^2\)[/tex] and [tex]\(-2\)[/tex]

4. [tex]\(2x^2\)[/tex] and [tex]\(-2\)[/tex]

The correct common factors to use in the next step of factoring are:

[tex]\[ x^2 \text{ and } -2 \][/tex]