22. Simplify the complex fraction:

[tex]\[
\frac{n-6}{n^2 + 11n + 24} \times \frac{n+3}{n+1}
\][/tex]

Options:

A. [tex]\(\frac{(n-6)(n+1)}{(n+3)(n+8)}\)[/tex]

B. [tex]\(\frac{(n-6)}{(n+1)(n+8)}\)[/tex]

C. [tex]\(\frac{(n-6)(n+8)}{(n+1)(n-8)}\)[/tex]

D. [tex]\(\frac{(n-6)(n+1)}{(n+3)^2(n+8)}\)[/tex]



Answer :

To simplify the complex fraction given:

[tex]\[ \frac{n-6}{n^2 + 11n + 24} \times \frac{n+3}{n+1} \][/tex]

let's start by factoring the denominator of the first fraction, [tex]\( n^2 + 11n + 24 \)[/tex].

### Step 1: Factor the Quadratic Expression
The expression [tex]\( n^2 + 11n + 24 \)[/tex] can be factored as follows:
- Look for two numbers that multiply to 24 (the constant term) and add to 11 (the coefficient of [tex]\( n \)[/tex]).
- These numbers are 3 and 8.

Therefore,

[tex]\[ n^2 + 11n + 24 = (n + 3)(n + 8) \][/tex]

### Step 2: Substitute Back into the Expression
Substitute the factored form of the quadratic expression into the original complex fraction:

[tex]\[ \frac{n-6}{(n + 3)(n + 8)} \times \frac{n+3}{n+1} \][/tex]

### Step 3: Simplify the Expression
To multiply these fractions, first multiply the numerators together and the denominators together:

[tex]\[ \frac{(n-6) \cdot (n+3)}{(n + 3)(n + 8) \cdot (n + 1)} \][/tex]

Notice that [tex]\( (n+3) \)[/tex] appears in both the numerator and the denominator. We can cancel out the common factor [tex]\( (n+3) \)[/tex]:

[tex]\[ \frac{(n-6)}{(n + 8) \cdot (n + 1)} \][/tex]

Thus the simplified form of the given expression is:

[tex]\[ \frac{n - 6}{(n + 1)(n + 8)} \][/tex]

### Conclusion
After simplification, the given fraction simplifies to:

[tex]\[ \frac{n - 6}{(n + 1)(n + 8)} \][/tex]

Therefore, the correct answer among the provided options is:

[tex]\[ \frac{(n-6)}{(n+1)(n+8)} \][/tex]