If [tex]7p - 4 = 8[/tex], what is the value of [tex]p[/tex]?

A. [tex]\frac{4}{7}[/tex]
B. [tex]\frac{7}{12}[/tex]
C. [tex]\frac{12}{7}[/tex]
D. [tex]\frac{7}{4}[/tex]



Answer :

To find the value of [tex]\( p \)[/tex] in the equation [tex]\( 7p - 4 = 8 \)[/tex], follow these steps:

1. Isolate the term with [tex]\( p \)[/tex]:
- Start with the given equation:
[tex]\[ 7p - 4 = 8 \][/tex]
- Add 4 to both sides of the equation to eliminate the constant term on the left side:
[tex]\[ 7p - 4 + 4 = 8 + 4 \][/tex]
- Simplify the equation:
[tex]\[ 7p = 12 \][/tex]

2. Solve for [tex]\( p \)[/tex]:
- Divide both sides of the equation by 7 to isolate [tex]\( p \)[/tex]:
[tex]\[ p = \frac{12}{7} \][/tex]

So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = \frac{12}{7} \][/tex]

Thus, the correct answer is [tex]\( C \)[/tex] [tex]\(\frac{12}{7}\)[/tex].