Answer :

Let's break down and solve the given expression step by step:

[tex]\[ \sqrt[3]{(-9)(3)}(-2)^4 - \left(\sqrt{6^2}\right)(-3) + (-5)^0 + (-3)^2 \][/tex]

Step 1: Simplify inside the cubic root.
[tex]\[ (-9)(3) = -27 \][/tex]
So, we have:
[tex]\[ \sqrt[3]{-27} \][/tex]

Step 2: Evaluate the cubic root.
[tex]\[ \sqrt[3]{-27} = -3 \][/tex]
So, the expression now becomes:
[tex]\[ (-3)(-2)^4 - \left(\sqrt{6^2}\right)(-3) + (-5)^0 + (-3)^2 \][/tex]

Step 3: Evaluate [tex]\((-2)^4\)[/tex].
[tex]\[ (-2)^4 = 16 \][/tex]
So, the expression now becomes:
[tex]\[ (-3)(16) - \left(\sqrt{6^2}\right)(-3) + (-5)^0 + (-3)^2 \][/tex]

Step 4: Multiply [tex]\((-3)\)[/tex] with [tex]\(16\)[/tex].
[tex]\[ (-3)(16) = -48 \][/tex]
So, the expression now becomes:
[tex]\[ -48 - \left(\sqrt{6^2}\right)(-3) + (-5)^0 + (-3)^2 \][/tex]

Step 5: Evaluate [tex]\(\sqrt{6^2}\)[/tex].
[tex]\[ \sqrt{6^2} = \sqrt{36} = 6 \][/tex]
So, the expression now becomes:
[tex]\[ -48 - (6)(-3) + (-5)^0 + (-3)^2 \][/tex]

Step 6: Multiply [tex]\(6\)[/tex] by [tex]\((-3)\)[/tex].
[tex]\[ 6 \cdot (-3) = -18 \][/tex]
So, the expression now becomes:
[tex]\[ -48 - (-18) + (-5)^0 + (-3)^2 \][/tex]

Step 7: Evaluate [tex]\(-(-18)\)[/tex].
[tex]\[ -(-18) = 18 \][/tex]
So, the expression now becomes:
[tex]\[ -48 + 18 + (-5)^0 + (-3)^2 \][/tex]

Step 8: Evaluate [tex]\((-5)^0\)[/tex].
[tex]\[ (-5)^0 = 1 \][/tex]
So, the expression now becomes:
[tex]\[ -48 + 18 + 1 + (-3)^2 \][/tex]

Step 9: Evaluate [tex]\((-3)^2\)[/tex].
[tex]\[ (-3)^2 = 9 \][/tex]
So, the expression now becomes:
[tex]\[ -48 + 18 + 1 + 9 \][/tex]

Step 10: Combine the results.
Add these values together step-by-step:
[tex]\[ -48 + 18 = -30 \][/tex]
[tex]\[ -30 + 1 = -29 \][/tex]
[tex]\[ -29 + 9 = -20 \][/tex]

Thus, the value of the expression is:
[tex]\[ -20 \][/tex]