Which function is equivalent to [tex]y=x^2-10x+9[/tex]?

A. [tex]y=(x+5)^2+16[/tex]
B. [tex]y=(x-5)^2+16[/tex]
C. [tex]y=(x+5)^2-16[/tex]
D. [tex]y=(x-5)^2-16[/tex]



Answer :

Let's determine which function is equivalent to the given expression [tex]\( y = x^2 - 10x + 9 \)[/tex].

Below are the options we need to verify:

1. [tex]\( y = (x + 5)^2 + 16 \)[/tex]
2. [tex]\( y = (x - 5)^2 + 16 \)[/tex]
3. [tex]\( y = (x + 5)^2 - 16 \)[/tex]
4. [tex]\( y = (x - 5)^2 - 16 \)[/tex]

To verify equivalence, we will simplify each option and compare it to the given expression.

1. Option 1: [tex]\((x + 5)^2 + 16\)[/tex]
[tex]\[ (x + 5)^2 + 16 = (x^2 + 10x + 25) + 16 = x^2 + 10x + 41 \][/tex]
Clearly, [tex]\(x^2 + 10x + 41\)[/tex] is not equivalent to [tex]\(x^2 - 10x + 9\)[/tex].

2. Option 2: [tex]\((x - 5)^2 + 16\)[/tex]
[tex]\[ (x - 5)^2 + 16 = (x^2 - 10x + 25) + 16 = x^2 - 10x + 41 \][/tex]
Clearly, [tex]\(x^2 - 10x + 41\)[/tex] is not equivalent to [tex]\(x^2 - 10x + 9\)[/tex].

3. Option 3: [tex]\((x + 5)^2 - 16\)[/tex]
[tex]\[ (x + 5)^2 - 16 = (x^2 + 10x + 25) - 16 = x^2 + 10x + 9 \][/tex]
Clearly, [tex]\(x^2 + 10x + 9\)[/tex] is not equivalent to [tex]\(x^2 - 10x + 9\)[/tex].

4. Option 4: [tex]\((x - 5)^2 - 16\)[/tex]
[tex]\[ (x - 5)^2 - 16 = (x^2 - 10x + 25) - 16 = x^2 - 10x + 9 \][/tex]
This simplifies to [tex]\(x^2 - 10x + 9\)[/tex], which is exactly the given expression.

Thus, the expression that is equivalent to [tex]\( y = x^2 - 10x + 9 \)[/tex] is:

[tex]\[ y = (x - 5)^2 - 16 \][/tex]

Therefore, the correct option is:

[tex]\[ \boxed{4} \][/tex]