Answer :
To balance the chemical equation [tex]\( \text{Mg} + \text{O}_2 \rightarrow \text{MgO} \)[/tex], we need to ensure that the number of atoms of each element is the same on both sides of the equation. Here's the step-by-step process to achieve this:
1. Identify the Reactants and Products:
- Reactants: Magnesium (Mg) and Oxygen (O[tex]\(_2\)[/tex])
- Products: Magnesium Oxide (MgO)
2. Write the Unbalanced Equation:
[tex]\[ \text{Mg} + \text{O}_2 \rightarrow \text{MgO} \][/tex]
3. Count the Atoms of Each Element on Both Sides:
- Left side:
- Mg: 1
- O: 2 (since [tex]\( O_2 \)[/tex] has 2 atoms of Oxygen)
- Right side:
- Mg: 1
- O: 1 (in MgO there is 1 atom of Magnesium and 1 of Oxygen)
4. Balance the Oxygen Atoms:
- On the left, we have 2 Oxygen atoms, while on the right, we have only 1. To balance the Oxygen atoms, we will need 2 Magnesium Oxide (MgO) molecules which will provide 2 Oxygen atoms:
[tex]\[ \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
- Now the equation looks like this:
- Left side: [tex]\(\text{Mg}: 1\)[/tex], [tex]\(\text{O}: 2\)[/tex]
- Right side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex]
5. Balance the Magnesium Atoms:
- On the left, we had only 1 Magnesium atom initially, but on the right, we now have 2 Magnesium atoms in 2 MgO. To balance the Magnesium atoms, we place a coefficient of 2 in front of Mg on the left:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
6. Final Balanced Equation:
- Double-check the counts of each type of atom to ensure they are the same on both sides:
- Left side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex],
- Right side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex]
Thus, the balanced equation is:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
Finally, among the given options:
- [tex]\( \text{Mg} + 2 \text{O}_2 \rightarrow 4 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + 2 \text{O}_2 \rightarrow 2 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + 2 \text{O}_2 \rightarrow 4 \text{MgO} \)[/tex]
The correct balanced equation is:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
The correct answer is:
[tex]\[ \boxed{2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO}} \][/tex]
1. Identify the Reactants and Products:
- Reactants: Magnesium (Mg) and Oxygen (O[tex]\(_2\)[/tex])
- Products: Magnesium Oxide (MgO)
2. Write the Unbalanced Equation:
[tex]\[ \text{Mg} + \text{O}_2 \rightarrow \text{MgO} \][/tex]
3. Count the Atoms of Each Element on Both Sides:
- Left side:
- Mg: 1
- O: 2 (since [tex]\( O_2 \)[/tex] has 2 atoms of Oxygen)
- Right side:
- Mg: 1
- O: 1 (in MgO there is 1 atom of Magnesium and 1 of Oxygen)
4. Balance the Oxygen Atoms:
- On the left, we have 2 Oxygen atoms, while on the right, we have only 1. To balance the Oxygen atoms, we will need 2 Magnesium Oxide (MgO) molecules which will provide 2 Oxygen atoms:
[tex]\[ \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
- Now the equation looks like this:
- Left side: [tex]\(\text{Mg}: 1\)[/tex], [tex]\(\text{O}: 2\)[/tex]
- Right side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex]
5. Balance the Magnesium Atoms:
- On the left, we had only 1 Magnesium atom initially, but on the right, we now have 2 Magnesium atoms in 2 MgO. To balance the Magnesium atoms, we place a coefficient of 2 in front of Mg on the left:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
6. Final Balanced Equation:
- Double-check the counts of each type of atom to ensure they are the same on both sides:
- Left side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex],
- Right side: [tex]\(\text{Mg}: 2\)[/tex], [tex]\(\text{O}: 2\)[/tex]
Thus, the balanced equation is:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
Finally, among the given options:
- [tex]\( \text{Mg} + 2 \text{O}_2 \rightarrow 4 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + 2 \text{O}_2 \rightarrow 2 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \)[/tex]
- [tex]\( 2 \text{Mg} + 2 \text{O}_2 \rightarrow 4 \text{MgO} \)[/tex]
The correct balanced equation is:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]
The correct answer is:
[tex]\[ \boxed{2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO}} \][/tex]