Answer :
To determine the number of integral values of [tex]\( a \)[/tex] for which the quadratic equation [tex]\((x + a)(x + 1991) + 1 = 0\)[/tex] has integral roots, we need to look at the specifics of the equation and its solutions step by step.
First, let's rewrite the given quadratic equation:
[tex]\[ (x + a)(x + 1991) + 1 = 0 \][/tex]
Expanding this, we get:
[tex]\[ x^2 + (a + 1991)x + a \cdot 1991 + 1 = 0 \][/tex]
For this quadratic equation to have integral (integer) roots, the discriminant of the quadratic equation, given by [tex]\(b^2 - 4ac\)[/tex], must be a perfect square.
Here, the quadratic equation is in the standard form [tex]\(Ax^2 + Bx + C = 0\)[/tex] with:
- [tex]\(A = 1\)[/tex]
- [tex]\(B = a + 1991\)[/tex]
- [tex]\(C = a \cdot 1991 + 1\)[/tex]
The discriminant of the quadratic equation is:
[tex]\[ \Delta = (a + 1991)^2 - 4 \cdot 1 \cdot (a \cdot 1991 + 1) \][/tex]
Let's compute this discriminant:
[tex]\[ \Delta = (a + 1991)^2 - 4(a \cdot 1991 + 1) \][/tex]
[tex]\[ = (a + 1991)^2 - 4a \cdot 1991 - 4 \][/tex]
[tex]\[ = a^2 + 2 \cdot 1991 \cdot a + 1991^2 - 4a \cdot 1991 - 4 \][/tex]
[tex]\[ = a^2 + 3982a + 1991^2 - 7964a - 4 \][/tex]
[tex]\[ = a^2 - 3982a + 1991^2 - 4 \][/tex]
So for [tex]\(\Delta\)[/tex] to be a perfect square:
[tex]\[ a^2 - 3982a + 1991^2 - 4 \text{ must be a perfect square.} \][/tex]
This requirement imposes strict conditions on [tex]\( a \)[/tex]. To find integral values of [tex]\( a \)[/tex] meeting this condition, we must check if there are any values that satisfy both the discriminant condition and realistic computation checks which show integer roots for [tex]\( x \)[/tex].
After evaluating these conditions thoroughly:
- We find that there are actually 0 integral values of [tex]\( a \)[/tex] that would make the roots integral, as no such [tex]\( a \)[/tex] exists which satisfies the perfect square condition in the discriminant.
Thus, the number of integral values of [tex]\( a \)[/tex] is:
[tex]\[ \boxed{0} \][/tex]
First, let's rewrite the given quadratic equation:
[tex]\[ (x + a)(x + 1991) + 1 = 0 \][/tex]
Expanding this, we get:
[tex]\[ x^2 + (a + 1991)x + a \cdot 1991 + 1 = 0 \][/tex]
For this quadratic equation to have integral (integer) roots, the discriminant of the quadratic equation, given by [tex]\(b^2 - 4ac\)[/tex], must be a perfect square.
Here, the quadratic equation is in the standard form [tex]\(Ax^2 + Bx + C = 0\)[/tex] with:
- [tex]\(A = 1\)[/tex]
- [tex]\(B = a + 1991\)[/tex]
- [tex]\(C = a \cdot 1991 + 1\)[/tex]
The discriminant of the quadratic equation is:
[tex]\[ \Delta = (a + 1991)^2 - 4 \cdot 1 \cdot (a \cdot 1991 + 1) \][/tex]
Let's compute this discriminant:
[tex]\[ \Delta = (a + 1991)^2 - 4(a \cdot 1991 + 1) \][/tex]
[tex]\[ = (a + 1991)^2 - 4a \cdot 1991 - 4 \][/tex]
[tex]\[ = a^2 + 2 \cdot 1991 \cdot a + 1991^2 - 4a \cdot 1991 - 4 \][/tex]
[tex]\[ = a^2 + 3982a + 1991^2 - 7964a - 4 \][/tex]
[tex]\[ = a^2 - 3982a + 1991^2 - 4 \][/tex]
So for [tex]\(\Delta\)[/tex] to be a perfect square:
[tex]\[ a^2 - 3982a + 1991^2 - 4 \text{ must be a perfect square.} \][/tex]
This requirement imposes strict conditions on [tex]\( a \)[/tex]. To find integral values of [tex]\( a \)[/tex] meeting this condition, we must check if there are any values that satisfy both the discriminant condition and realistic computation checks which show integer roots for [tex]\( x \)[/tex].
After evaluating these conditions thoroughly:
- We find that there are actually 0 integral values of [tex]\( a \)[/tex] that would make the roots integral, as no such [tex]\( a \)[/tex] exists which satisfies the perfect square condition in the discriminant.
Thus, the number of integral values of [tex]\( a \)[/tex] is:
[tex]\[ \boxed{0} \][/tex]