Answer :
Sure, let's solve the system of equations step by step:
[tex]\[ \begin{cases} 3x + 4y = 3 \\ 2x - y = 13 \end{cases} \][/tex]
Step 1: Solve one of the equations for one of the variables
We can start by solving the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x - y = 13 \][/tex]
First, isolate [tex]\( y \)[/tex]:
[tex]\[ -y = 13 - 2x \implies y = 2x - 13 \][/tex]
Step 2: Substitute the expression for [tex]\( y \)[/tex] into the first equation
Now, we substitute [tex]\( y = 2x - 13 \)[/tex] into the first equation:
[tex]\[ 3x + 4(2x - 13) = 3 \][/tex]
Step 3: Simplify and solve for [tex]\( x \)[/tex]
Distribute the 4 inside the parentheses:
[tex]\[ 3x + 8x - 52 = 3 \][/tex]
Combine like terms:
[tex]\[ 11x - 52 = 3 \][/tex]
Add 52 to both sides:
[tex]\[ 11x = 55 \][/tex]
Divide both sides by 11:
[tex]\[ x = 5 \][/tex]
Step 4: Substitute the value of [tex]\( x \)[/tex] back into the equation for [tex]\( y \)[/tex]
We know that [tex]\( y = 2x - 13 \)[/tex]. Substitute [tex]\( x = 5 \)[/tex] into this equation:
[tex]\[ y = 2(5) - 13 \][/tex]
Simplify:
[tex]\[ y = 10 - 13 \][/tex]
[tex]\[ y = -3 \][/tex]
Conclusion:
The solution to the system of equations is [tex]\( x = 5 \)[/tex] and [tex]\( y = -3 \)[/tex].
So the solution is:
[tex]\[ (x, y) = \boxed{(5, -3)} \][/tex]
[tex]\[ \begin{cases} 3x + 4y = 3 \\ 2x - y = 13 \end{cases} \][/tex]
Step 1: Solve one of the equations for one of the variables
We can start by solving the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x - y = 13 \][/tex]
First, isolate [tex]\( y \)[/tex]:
[tex]\[ -y = 13 - 2x \implies y = 2x - 13 \][/tex]
Step 2: Substitute the expression for [tex]\( y \)[/tex] into the first equation
Now, we substitute [tex]\( y = 2x - 13 \)[/tex] into the first equation:
[tex]\[ 3x + 4(2x - 13) = 3 \][/tex]
Step 3: Simplify and solve for [tex]\( x \)[/tex]
Distribute the 4 inside the parentheses:
[tex]\[ 3x + 8x - 52 = 3 \][/tex]
Combine like terms:
[tex]\[ 11x - 52 = 3 \][/tex]
Add 52 to both sides:
[tex]\[ 11x = 55 \][/tex]
Divide both sides by 11:
[tex]\[ x = 5 \][/tex]
Step 4: Substitute the value of [tex]\( x \)[/tex] back into the equation for [tex]\( y \)[/tex]
We know that [tex]\( y = 2x - 13 \)[/tex]. Substitute [tex]\( x = 5 \)[/tex] into this equation:
[tex]\[ y = 2(5) - 13 \][/tex]
Simplify:
[tex]\[ y = 10 - 13 \][/tex]
[tex]\[ y = -3 \][/tex]
Conclusion:
The solution to the system of equations is [tex]\( x = 5 \)[/tex] and [tex]\( y = -3 \)[/tex].
So the solution is:
[tex]\[ (x, y) = \boxed{(5, -3)} \][/tex]