Consider a population that grows according to the recursive rule [tex]P_n = P_{n-1} + 30[/tex], with initial population [tex]P_0 = 70[/tex].

Then:
[tex]
\begin{array}{l}
P_1 = \\
P_2 =
\end{array}
[/tex]

Find an explicit formula for the population. Your formula should involve [tex]n[/tex] (use lowercase n):
[tex]
P_n =
[/tex] [tex]\square[/tex]

Use your explicit formula to find [tex]P_{100}[/tex]:
[tex]
P_{100} = \square
[/tex]



Answer :

Sure, let's break this down step-by-step using the given initial conditions and recursive rule.

### Step 1: Calculate [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex]

The initial population is given as:
[tex]\[ P_0 = 70 \][/tex]

The recursive rule for the population is:
[tex]\[ P_n = P_{n-1} + 30 \][/tex]

Using this rule:

1. For [tex]\( P_1 \)[/tex]:
[tex]\[ P_1 = P_0 + 30 \][/tex]
Since [tex]\( P_0 = 70 \)[/tex]:
[tex]\[ P_1 = 70 + 30 = 100 \][/tex]

2. For [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = P_1 + 30 \][/tex]
Since [tex]\( P_1 = 100 \)[/tex]:
[tex]\[ P_2 = 100 + 30 = 130 \][/tex]

### Step 2: Find an explicit formula for the population

To find the explicit formula, let's observe the pattern in the population growth:

- [tex]\( P_1 = 100 \)[/tex]
- [tex]\( P_2 = 130 \)[/tex]
- Generally, each step increases the population by 30.

This can be generalized as follows:
[tex]\[ P_n = P_0 + n \cdot 30 \][/tex]

Thus, the explicit formula for the population is:
[tex]\[ P_n = 70 + 30n \][/tex]

### Step 3: Use the explicit formula to find [tex]\( P_{100} \)[/tex]

Now we will use the explicit formula to find [tex]\( P_{100} \)[/tex]:
[tex]\[ P_{100} = 70 + 30 \cdot 100 \][/tex]
[tex]\[ P_{100} = 70 + 3000 \][/tex]
[tex]\[ P_{100} = 3070 \][/tex]

To summarize:

[tex]\[ \begin{array}{l} P_1 = 100 \\ P_2 = 130 \\ \end{array} \][/tex]

The explicit formula for the population is:
[tex]\[ P_n = 70 + 30n \][/tex]

Finally, the population at [tex]\( n = 100 \)[/tex] is:
[tex]\[ P_{100} = 3070 \][/tex]