To solve the equation [tex]\(3x - \frac{1}{9} y = 18\)[/tex] for [tex]\(x\)[/tex] given that [tex]\(y = 27\)[/tex], follow these steps:
1. Substitute the value of [tex]\(y\)[/tex] into the equation:
[tex]\[
3x - \frac{1}{9} \cdot 27 = 18
\][/tex]
2. Simplify the term involving [tex]\(y\)[/tex]:
[tex]\[
3x - 3 = 18
\][/tex]
3. Isolate the term containing [tex]\(x\)[/tex]:
Add 3 to both sides of the equation:
[tex]\[
3x = 21
\][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 3:
[tex]\[
x = \frac{21}{3}
\][/tex]
[tex]\[
x = 7
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(7\)[/tex].
So the correct answer is:
[tex]\[
\boxed{7}
\][/tex]