Answered

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & 105 \\
\hline
-3 & 0 \\
\hline
-2 & -15 \\
\hline
-1 & 0 \\
\hline
0 & 9 \\
\hline
1 & 0 \\
\hline
2 & -15 \\
\hline
3 & 0 \\
\hline
4 & 105 \\
\hline
5 & 384 \\
\hline
\end{tabular}

According to the table, which ordered pair is a local minimum of the function, [tex]$\pi(x)$[/tex]?

A. [tex]$(0, 9)$[/tex]
B. [tex]$(4, 105)$[/tex]
C. [tex]$(-1, 0)$[/tex]
D. [tex]$(2, -15)$[/tex]



Answer :

To determine the local minimum of the given function [tex]\(\pi(x)\)[/tex] from the table of values, we need to identify the point where the function attains the lowest value.

Here's the table again for reference:

[tex]\[ \begin{array}{|c|c|} \hline x & \pi(x) \\ \hline -4 & 105 \\ \hline -3 & 0 \\ \hline -2 & -15 \\ \hline -1 & 0 \\ \hline 0 & 9 \\ \hline 1 & 0 \\ \hline 2 & -15 \\ \hline 3 & 0 \\ \hline 4 & 105 \\ \hline 5 & 384 \\ \hline \end{array} \][/tex]

We need to:

1. Look for all the values of [tex]\(\pi(x)\)[/tex] and identify the smallest value.
2. Check that the corresponding [tex]\(x\)[/tex] value produces the global minimum or local minimum by considering neighboring values.

From the table, we observe the following values:

- [tex]\(\pi(-4) = 105\)[/tex]
- [tex]\(\pi(-3) = 0\)[/tex]
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(-1) = 0\)[/tex]
- [tex]\(\pi(0) = 9\)[/tex]
- [tex]\(\pi(1) = 0\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
- [tex]\(\pi(3) = 0\)[/tex]
- [tex]\(\pi(4) = 105\)[/tex]
- [tex]\(\pi(5) = 384\)[/tex]

The smallest value in the table is [tex]\(-15\)[/tex].

We see two points where [tex]\(\pi(x) = -15\)[/tex]:
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]

Although both points [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] share the same function value, we need to determine which one is a local minimum. In this context, we validate this by verifying adjacent values to ensure that they are higher than the minimum.

Here's the validation:
- For [tex]\(x = -2\)[/tex], the adjacent values are [tex]\(\pi(-3) = 0\)[/tex] and [tex]\(\pi(-1) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
- For [tex]\(x = 2\)[/tex], the adjacent values are [tex]\(\pi(1) = 0\)[/tex] and [tex]\(\pi(3) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].

Thus, both [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] can be considered local minima, but typically we report the first occurrence or the one explicitly asked for.

Therefore, the ordered pair that represents a local minimum of the function [tex]\(\pi(x)\)[/tex], according to the table, is:

[tex]\(\boxed{(-2, -15)}\)[/tex]