Answered

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. the temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. the amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. the amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit



Answer :

Let's start by understanding the given function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This is a conversion formula used to convert a temperature from degrees Fahrenheit (F) to degrees Celsius (C).

We are asked to find what [tex]\( C(76.1) \)[/tex] represents.

1. Identify the Function:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] represents the corresponding temperature in degrees Celsius.

2. Plug in the Temperature in Fahrenheit:

We are given a temperature of [tex]\( 76.1^{\circ}F \)[/tex].

So we substitute [tex]\( F = 76.1 \)[/tex] into the function:

[tex]\[ C(76.1) = \frac{5}{9} (76.1 - 32) \][/tex]

3. Simplify the Expression Inside the Parentheses:

First, calculate the value inside the parentheses:

[tex]\[ 76.1 - 32 = 44.1 \][/tex]

4. Apply the Conversion Formula:

Next, multiply by the fraction [tex]\( \frac{5}{9} \)[/tex]:

[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

5. Compute the Conversion Result:

Simplifying the multiplication, we get:

[tex]\[ C(76.1) \approx 24.5 \][/tex]

So, [tex]\( C(76.1) \approx 24.5 \)[/tex].

Now let's analyze the options to determine what [tex]\( C(76.1) \)[/tex] represents:

1. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
2. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
3. The amount of time it takes for a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
4. The amount of time it takes for a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Given that the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] converts temperatures directly from Fahrenheit to Celsius, the correct interpretation is:

1. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.