Select the correct answer.

Which expression is equivalent to the following polynomial expression?

[tex]\[ \left(5xy^2 + 3x^2 - 7\right) + \left(3x^2 y^2 - xy^2 + 3y^2 + 4\right) \][/tex]

A. [tex]\(9x^2 y^2 + 4xy^2 - 3\)[/tex]

B. [tex]\(3x^2 y^2 + 6xy^2 + 6x^2 + 3\)[/tex]

C. [tex]\(3x^2 y^2 + 4xy^2 + 3x^2 + 3y^2 - 3\)[/tex]

D. [tex]\(8x^2 y^2 + 2xy^2 - 4y^2 + 4\)[/tex]



Answer :

To solve the given polynomial expression, we need to combine like terms step-by-step.

Given polynomial expression:
[tex]\[ \left(5 x y^2 + 3 x^2 - 7\right) + \left(3 x^2 y^2 - x y^2 + 3 y^2 + 4\right) \][/tex]

First, distribute any constants and group the like terms together. We'll identify and combine terms involving [tex]\(x^2y^2\)[/tex], [tex]\(xy^2\)[/tex], [tex]\(x^2\)[/tex], [tex]\(y^2\)[/tex], and the constant terms.

Step-by-step:

1. Group the [tex]\(x^2y^2\)[/tex] terms:
[tex]\[ (3 x^2 y^2) \][/tex]
There is only one term with [tex]\(x^2y^2\)[/tex].

2. Group the [tex]\(xy^2\)[/tex] terms:
[tex]\[ (5 x y^2) - (x y^2) = 4 x y^2 \][/tex]
Combining these, we have [tex]\(4 x y^2\)[/tex].

3. Group the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3 x^2 \][/tex]
Again, there is only one term with [tex]\(x^2\)[/tex].

4. Group the [tex]\(y^2\)[/tex] terms:
[tex]\[ (3 y^2) \][/tex]
There is only one term with [tex]\(y^2\)[/tex].

5. Combine the constant terms:
[tex]\[ (-7) + 4 = -3 \][/tex]

Putting all these grouped terms together, the simplified expression is:
[tex]\[ 3 x^2 y^2 + 4 x y^2 + 3 x^2 + 3 y^2 - 3 \][/tex]

Thus, the expression that is equivalent to the given polynomial is:

C. [tex]\(3 x^2 y^2 + 4 x y^2 + 3 x^2 + 3 y^2 - 3\)[/tex]