Select the correct answer.

Which expression is equivalent to the given polynomial expression?

[tex]\[
(g-h)\left(g^2-3gh+2h^2\right)
\][/tex]

A. [tex]\(g^3 - 4g^2h + 5gh^2 - 2h^3\)[/tex]

B. [tex]\(g^3 - 2h^3\)[/tex]

C. [tex]\(g^3 + 4g^2h^2 - 2h^3\)[/tex]

D. [tex]\(g^3 - 2g^2h + gh^2 - 2h^3\)[/tex]



Answer :

Let's solve the given polynomial expression step-by-step:

We start with:
[tex]\[ (g - h)(g^2 - 3gh + 2h^2) \][/tex]

To find which expression is equivalent to this, we need to expand and simplify it.

Step 1: Distribute [tex]\( (g - h) \)[/tex] across each term inside the parentheses.

[tex]\[ = g(g^2 - 3gh + 2h^2) - h(g^2 - 3gh + 2h^2) \][/tex]

Now, distribute [tex]\( g \)[/tex] through the first term and [tex]\( -h \)[/tex] through the second term:

[tex]\[ = g \cdot g^2 + g \cdot (-3gh) + g \cdot 2h^2 - h \cdot g^2 - h \cdot (-3gh) - h \cdot 2h^2 \][/tex]

Step 2: Perform each multiplication.

[tex]\[ = g^3 - 3g^2h + 2gh^2 - hg^2 + 3gh^2 - 2h^3 \][/tex]

Step 3: Combine like terms.

Notice we have two terms containing [tex]\( g^2h \)[/tex], two terms containing [tex]\( gh^2 \)[/tex], and one term of each [tex]\( g^3 \)[/tex] and [tex]\( -2h^3 \)[/tex].

[tex]\[ = g^3 - 3g^2h - g^2h + 2gh^2 + 3gh^2 - 2h^3 \][/tex]
[tex]\[ = g^3 - 4g^2h + 5gh^2 - 2h^3 \][/tex]

Thus, the simplified expanded form of the given polynomial expression is:

[tex]\[ g^3 - 4g^2h + 5gh^2 - 2h^3 \][/tex]

Therefore, the correct choice is:

[tex]\[ \boxed{A: g^3 - 4g^2h + 5gh^2 - 2h^3} \][/tex]