Using the formula [tex]V = B \times h[/tex], what is the volume of a rectangular prism with a length of [tex]10 \frac{2}{5}[/tex] in., a width of [tex]8 \frac{1}{2}[/tex] in., and a height of [tex]6 \frac{1}{4}[/tex] in.?

Your answer should be a mixed number in simplest form.

[tex]\square \text{ in}^3[/tex]



Answer :

To determine the volume of a rectangular prism with the given dimensions, we will follow these steps:

1. Convert the mixed numbers into improper fractions:

- Length: [tex]\(10 \frac{2}{5}\)[/tex]
[tex]\[ 10 \frac{2}{5} = 10 + \frac{2}{5} = \frac{50}{5} + \frac{2}{5} = \frac{52}{5} \][/tex]

- Width: [tex]\(8 \frac{1}{2}\)[/tex]
[tex]\[ 8 \frac{1}{2} = 8 + \frac{1}{2} = \frac{16}{2} + \frac{1}{2} = \frac{17}{2} \][/tex]

- Height: [tex]\(6 \frac{1}{4}\)[/tex]
[tex]\[ 6 \frac{1}{4} = 6 + \frac{1}{4} = \frac{24}{4} + \frac{1}{4} = \frac{25}{4} \][/tex]

2. Calculate the base area: (Base Area = Length * Width)

[tex]\[ \text{Length} \times \text{Width} = \frac{52}{5} \times \frac{17}{2} = \frac{52 \times 17}{5 \times 2} = \frac{884}{10} \][/tex]

Simplify [tex]\(\frac{884}{10}\)[/tex]:

[tex]\[ \frac{884}{10} = 88.4 \, \text{(decimal form)} \][/tex]

3. Calculate the volume: (Volume = Base Area * Height)

[tex]\[ \text{Base Area} \times \text{Height} = 88.4 \times \frac{25}{4} \][/tex]

First, convert [tex]\(88.4\)[/tex] to an improper fraction:

[tex]\[ 88.4 = \frac{884}{10} \][/tex]

Now, multiply:

[tex]\[ \frac{884}{10} \times \frac{25}{4} = \frac{884 \times 25}{10 \times 4} = \frac{22100}{40} = 552.5 \, \text{(decimal form)} \][/tex]

4. Convert the volume back to a mixed number:

The decimal [tex]\(552.5\)[/tex] can be expressed as the mixed number [tex]\(552 \frac{1}{2}\)[/tex].

Therefore, the volume of the rectangular prism is:
[tex]\[ 552 \frac{1}{2} \, \text{in}^3 \][/tex]