Evaluate the expression. Do not round your answer.

[tex]\[ \frac{1}{4}\left(2^3 + 4^2\right) = \][/tex]

[tex]\[ \boxed{\square} \][/tex]



Answer :

Sure! Let's evaluate the given expression step-by-step.

We start with the expression:
[tex]\[ \frac{1}{4}\left(2^3+4^2\right) \][/tex]

1. Calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

2. Calculate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 4 \times 4 = 16 \][/tex]

3. Sum the results of [tex]\(2^3\)[/tex] and [tex]\(4^2\)[/tex]:
[tex]\[ 2^3 + 4^2 = 8 + 16 = 24 \][/tex]

4. Multiply the result by [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} \times 24 = 6 \][/tex]

Therefore, the value of the expression is:
[tex]\[ 6 \][/tex]