Determine whether each equation is true or false.

[tex]$
\begin{array}{l}
\text{A. } 2^4 = 2 \times 4 \\
\text{B. } 2^4 = 4 + 4 \\
\text{C. } 2^4 = 2 \times 2 \times 2 \times 2
\end{array}
$[/tex]

A. True / False

B. True / False

C. True / False



Answer :

Sure, let's determine whether each equation is true or false.

1. Evaluating the first equation [tex]\(2^4 = 2 \times 4\)[/tex]:
- On the left-hand side, [tex]\(2^4\)[/tex] means [tex]\(2\)[/tex] raised to the power of [tex]\(4\)[/tex], which equals [tex]\(16\)[/tex].
- On the right-hand side, [tex]\(2 \times 4\)[/tex] equals [tex]\(8\)[/tex].
- Comparing both sides: [tex]\(16 \neq 8\)[/tex].
- Thus, the equation [tex]\(2^4 = 2 \times 4\)[/tex] is False.

2. Evaluating the second equation [tex]\(2^4 = 4 + 4\)[/tex]:
- On the left-hand side, [tex]\(2^4\)[/tex] means [tex]\(2\)[/tex] raised to the power of [tex]\(4\)[/tex], which again equals [tex]\(16\)[/tex].
- On the right-hand side, [tex]\(4 + 4\)[/tex] equals [tex]\(8\)[/tex].
- Comparing both sides: [tex]\(16 \neq 8\)[/tex].
- Thus, the equation [tex]\(2^4 = 4 + 4\)[/tex] is False.

3. Evaluating the third equation [tex]\(2^4 = 2 \times 2 \times 2 \times 2\)[/tex]:
- On the left-hand side, [tex]\(2^4\)[/tex] means [tex]\(2\)[/tex] raised to the power of [tex]\(4\)[/tex], which equals [tex]\(16\)[/tex].
- On the right-hand side, [tex]\(2 \times 2 \times 2 \times 2\)[/tex] equals [tex]\(16\)[/tex] (since [tex]\(2 \times 2 = 4\)[/tex], and [tex]\(4 \times 2 = 8\)[/tex], and [tex]\(8 \times 2 = 16\)[/tex]).
- Comparing both sides: [tex]\(16 = 16\)[/tex].
- Thus, the equation [tex]\(2^4 = 2 \times 2 \times 2 \times 2\)[/tex] is True.

To summarize:
[tex]\[ \begin{array}{l} 2^4 = 2 \times 4 \quad \text{False} \\ 2^4 = 4 + 4 \quad \text{False} \\ 2^4 = 2 \times 2 \times 2 \times 2 \quad \text{True} \end{array} \][/tex]