Which of the [tex]x[/tex] values are solutions to the inequality [tex]4(2-x) \ \textgreater \ -2x - 3(4x + 1)[/tex]? Check all that apply.

[tex]
\begin{array}{l}
x = -1.1 \\
x = -2.2 \\
x = 0 \\
x = -10 \\
x = 10
\end{array}
[/tex]



Answer :

Sure, let's solve the inequality step-by-step and determine which of the given values for [tex]\( x \)[/tex] satisfy it.

The original inequality is:
[tex]\[ 4(2 - x) > -2x - 3(4x + 1) \][/tex]

First, we distribute the terms inside the parentheses:

[tex]\[ 4 \cdot 2 - 4 \cdot x > -2x - 3(4x + 1) \\ 8 - 4x > -2x - 12x - 3 \][/tex]

Next, simplify and combine like terms:

[tex]\[ 8 - 4x > -14x - 3 \][/tex]

To isolate [tex]\( x \)[/tex], we add [tex]\( 14x \)[/tex] to both sides:

[tex]\[ 8 - 4x + 14x > -14x + 14x - 3 \\ 8 + 10x > -3 \][/tex]

Now, we add 3 to both sides:

[tex]\[ 8 + 3 + 10x > -3 + 3 \\ 11 + 10x > 0 \][/tex]

Finally, solve for [tex]\( x \)[/tex]:

[tex]\[ 11 + 10x > 0 \\ 10x > -11 \\ x > -1.1 \][/tex]

Thus, the inequality [tex]\( 4(2 - x) > -2x - 3(4x + 1) \)[/tex] simplifies to [tex]\( x > -1.1 \)[/tex].

Now, let’s determine which of the given [tex]\( x \)[/tex]-values satisfy this inequality:

1. [tex]\( x = -1.1 \)[/tex]:
[tex]\[ -1.1 \not> -1.1 \][/tex] (False)

2. [tex]\( x = -2.2 \)[/tex]:
[tex]\[ -2.2 \not> -1.1 \][/tex] (False)

3. [tex]\( x = 0 \)[/tex]:
[tex]\[ 0 > -1.1 \][/tex] (True)

4. [tex]\( x = -10 \)[/tex]:
[tex]\[ -10 \not> -1.1 \][/tex] (False)

5. [tex]\( x = 10 \)[/tex]:
[tex]\[ 10 > -1.1 \][/tex] (True)

The values of [tex]\( x \)[/tex] that satisfy the inequality [tex]\( 4(2 - x) > -2x - 3(4x + 1) \)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = 10 \][/tex]