Answer :
To determine the correct system of equations corresponding to the given matrix multiplication operation, we need to interpret the equation:
[tex]$ \left[\begin{array}{ccc} 5 & 2 & 1 \\ 7 & -5 & 2 \\ -5 & 3 & 1 \end{array}\right] \times\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 16 \\ 3 \\ 12 \end{array}\right] $[/tex]
This matrix equation can be written as a system of linear equations by performing the matrix multiplication:
1. Multiply the first row of the coefficient matrix by the variable column vector:
[tex]\[ 5x + 2y + z = 16 \][/tex]
2. Multiply the second row of the coefficient matrix by the variable column vector:
[tex]\[ 7x - 5y + 2z = 3 \][/tex]
3. Multiply the third row of the coefficient matrix by the variable column vector:
[tex]\[ -5x + 3y + z = 12 \][/tex]
Thus, the system of equations corresponding to the given matrix multiplication is:
[tex]\[ \begin{cases} 5x + 2y + z = 16 \\ 7x - 5y + 2z = 3 \\ -5x + 3y + z = 12 \end{cases} \][/tex]
Comparing this system to the options given:
A. [tex]\( 5x + 2x + x = 16 \; ; \; 7y - 5y + 2y = 3 \; ; \; -5z + 3z + z = 12 \)[/tex]
B. [tex]\( 5x + 2y + z = 16 \; ; \; 7x - 5y + 2z = 3 \; ; \; -5x + 3y + z = 12 \)[/tex]
C. [tex]\( 5x + 7y - 5z = 16 \; ; \; 2x - 5y + 3z = 3 \; ; \; x + 2y + z = 12 \)[/tex]
D. [tex]\( 5x + 7y - 5z = 12 \; ; \; 2x - 5y + 3z = 3 \; ; \; x + 2y + z = 16 \)[/tex]
The correct answer is:
B. [tex]\( 5x + 2y + z = 16 ; 7x - 5y + 2z = 3 ; -5x + 3y + z = 12 \)[/tex]
[tex]$ \left[\begin{array}{ccc} 5 & 2 & 1 \\ 7 & -5 & 2 \\ -5 & 3 & 1 \end{array}\right] \times\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 16 \\ 3 \\ 12 \end{array}\right] $[/tex]
This matrix equation can be written as a system of linear equations by performing the matrix multiplication:
1. Multiply the first row of the coefficient matrix by the variable column vector:
[tex]\[ 5x + 2y + z = 16 \][/tex]
2. Multiply the second row of the coefficient matrix by the variable column vector:
[tex]\[ 7x - 5y + 2z = 3 \][/tex]
3. Multiply the third row of the coefficient matrix by the variable column vector:
[tex]\[ -5x + 3y + z = 12 \][/tex]
Thus, the system of equations corresponding to the given matrix multiplication is:
[tex]\[ \begin{cases} 5x + 2y + z = 16 \\ 7x - 5y + 2z = 3 \\ -5x + 3y + z = 12 \end{cases} \][/tex]
Comparing this system to the options given:
A. [tex]\( 5x + 2x + x = 16 \; ; \; 7y - 5y + 2y = 3 \; ; \; -5z + 3z + z = 12 \)[/tex]
B. [tex]\( 5x + 2y + z = 16 \; ; \; 7x - 5y + 2z = 3 \; ; \; -5x + 3y + z = 12 \)[/tex]
C. [tex]\( 5x + 7y - 5z = 16 \; ; \; 2x - 5y + 3z = 3 \; ; \; x + 2y + z = 12 \)[/tex]
D. [tex]\( 5x + 7y - 5z = 12 \; ; \; 2x - 5y + 3z = 3 \; ; \; x + 2y + z = 16 \)[/tex]
The correct answer is:
B. [tex]\( 5x + 2y + z = 16 ; 7x - 5y + 2z = 3 ; -5x + 3y + z = 12 \)[/tex]