\begin{tabular}{|c|c|c|c|c|}
\hline & [tex]$X$[/tex] & [tex]$Y$[/tex] & [tex]$Z$[/tex] & Total \\
\hline A & 10 & 80 & 61 & 151 \\
\hline B & 110 & 44 & 126 & 280 \\
\hline C & 60 & 59 & 110 & 229 \\
\hline Total & 180 & 183 & 297 & 660 \\
\hline
\end{tabular}

Which statement is true about whether [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events?

A. [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P( Z \mid B ) = P(Z)$[/tex].
B. [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P( Z \mid B ) = P(B)$[/tex].
C. [tex]$Z$[/tex] and [tex]$B$[/tex] are not independent events because [tex]$P( Z \mid B ) \neq P(Z)$[/tex].
D. [tex]$Z$[/tex] and [tex]$B$[/tex] are not independent events because [tex]$P( Z \mid B ) \neq P(B)$[/tex].



Answer :

To determine whether events [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent, we need to examine their probabilities and determine if they meet the criterion for independence. Specifically, we need to check if the conditional probability [tex]\( P(Z \mid B) \)[/tex] is equal to the marginal probability [tex]\( P(Z) \)[/tex].

First, let's define the relevant probabilities:

1. Total Number of Observations: [tex]\( 660 \)[/tex]
2. Number of Observations in [tex]\( Z \)[/tex]: [tex]\( 297 \)[/tex]
3. Number of Observations in [tex]\( B \)[/tex]: [tex]\( 280 \)[/tex]
4. Number of Observations in both [tex]\( Z \)[/tex] and [tex]\( B \)[/tex]: [tex]\( 126 \)[/tex]

Next, we calculate the probabilities:

1. Calculate [tex]\( P(Z) \)[/tex]:
[tex]\[ P(Z) = \frac{\text{Number of Observations in } Z}{\text{Total Number of Observations}} = \frac{297}{660} \][/tex]

2. Calculate [tex]\( P(B) \)[/tex]:
[tex]\[ P(B) = \frac{\text{Number of Observations in } B}{\text{Total Number of Observations}} = \frac{280}{660} \][/tex]

3. Calculate [tex]\( P(Z \mid B) \)[/tex]:
[tex]\[ P(Z \mid B) = \frac{\text{Number of Observations in both } Z \text{ and } B}{\text{Number of Observations in } B} = \frac{126}{280} \][/tex]

To determine if [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent, we need to check if:

[tex]\[ P(Z \mid B) = P(Z) \][/tex]

After calculating these probabilities, we found that:

[tex]\[ P(Z \mid B) = P(Z) \][/tex]

Since we have determined that [tex]\( P(Z \mid B) \)[/tex] is equal to [tex]\( P(Z) \)[/tex], this means [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are indeed independent events according to the definition. Therefore, the correct statement is:

[tex]\[ \text{Z and B are independent events because } P(Z \mid B) = P(Z). \][/tex]