Which expressions are equivalent to the one below? Check all that apply.

[tex]\[ 25^x \][/tex]

A. [tex]\(5^2 \cdot 5^x\)[/tex]

B. [tex]\((5 \cdot 5)^x\)[/tex]

C. [tex]\(5 \cdot 5^{2x}\)[/tex]

D. [tex]\(5^x \cdot 5^x\)[/tex]

E. [tex]\(5^{2x}\)[/tex]

F. [tex]\(5 \cdot 5^x\)[/tex]



Answer :

To determine which expressions are equivalent to [tex]\( 25^x \)[/tex], let’s simplify and analyze each option step-by-step.

First, let’s rewrite [tex]\( 25^x \)[/tex] in a simpler form using exponents:

[tex]\[ 25^x \][/tex]

Since [tex]\( 25 \)[/tex] can be expressed as [tex]\( 5^2 \)[/tex]:

[tex]\[ 25^x = (5^2)^x \][/tex]

Using the properties of exponents, [tex]\((a^b)^c = a^{b \cdot c}\)[/tex]:

[tex]\[ (5^2)^x = 5^{2x} \][/tex]

So, [tex]\( 25^x \)[/tex] can be rewritten as:

[tex]\[ 5^{2x} \][/tex]

Now, let’s compare this form with each given option:

A. [tex]\( 5^2 \cdot 5^x \)[/tex]
- Using the properties of exponents, [tex]\( a^b \cdot a^c = a^{b+c} \)[/tex]:
[tex]\[ 5^2 \cdot 5^x = 5^{2+x} \][/tex]
- This is not equivalent to [tex]\( 25^x \)[/tex] or [tex]\( 5^{2x} \)[/tex].

B. [tex]\( (5 \cdot 5)^x \)[/tex]
- Simplify the expression inside the parentheses:
[tex]\[ 5 \cdot 5 = 25 \][/tex]
- So,
[tex]\[ (5 \cdot 5)^x = 25^x \][/tex]
- This is exactly the original expression, [tex]\( 25^x \)[/tex].

C. [tex]\( 5 \cdot 5^{2x} \)[/tex]
- Using the properties of exponents, [tex]\( a \cdot a^b = a^{1+b} \)[/tex]:
[tex]\[ 5 \cdot 5^{2x} = 5^{1+2x} \][/tex]
- This is not equivalent to [tex]\( 25^x \)[/tex] or [tex]\( 5^{2x} \)[/tex].

D. [tex]\( 5^x \cdot 5^x \)[/tex]
- Using the properties of exponents, [tex]\( a^b \cdot a^c = a^{b+c} \)[/tex]:
[tex]\[ 5^x \cdot 5^x = 5^{x+x} = 5^{2x} \][/tex]
- This is equivalent to [tex]\( 25^x \)[/tex] or [tex]\( 5^{2x} \)[/tex].

E. [tex]\( 5^{2x} \)[/tex]
- This is exactly the simplified form of [tex]\( 25^x \)[/tex]:
[tex]\[ 25^x = 5^{2x} \][/tex]

F. [tex]\( 5 \cdot 5^x \)[/tex]
- Using the properties of exponents, [tex]\( a \cdot a^b = a^{1+b} \)[/tex]:
[tex]\[ 5 \cdot 5^x = 5^{1+x} \][/tex]
- This is not equivalent to [tex]\( 25^x \)[/tex] or [tex]\( 5^{2x} \)[/tex].

Therefore, the expressions that are equivalent to [tex]\( 25^x \)[/tex] are:

- B. [tex]\( (5 \cdot 5)^x \)[/tex]
- D. [tex]\( 5^x \cdot 5^x \)[/tex]
- E. [tex]\( 5^{2x} \)[/tex]