Answer :
Sure! Let's determine the slope of the line passing through the points [tex]\((-3, -5)\)[/tex] and [tex]\((1, 7)\)[/tex].
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, our points are [tex]\((x_1, y_1) = (-3, -5)\)[/tex] and [tex]\((x_2, y_2) = (1, 7)\)[/tex].
So we substitute these into the formula:
[tex]\[ m = \frac{7 - (-5)}{1 - (-3)} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ m = \frac{7 + 5}{1 + 3} \][/tex]
[tex]\[ m = \frac{12}{4} \][/tex]
[tex]\[ m = 3 \][/tex]
Therefore, the slope of the line passing through the points [tex]\((-3, -5)\)[/tex] and [tex]\((1, 7)\)[/tex] is [tex]\(3\)[/tex].
Hence, the correct answer is:
(B) 3
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, our points are [tex]\((x_1, y_1) = (-3, -5)\)[/tex] and [tex]\((x_2, y_2) = (1, 7)\)[/tex].
So we substitute these into the formula:
[tex]\[ m = \frac{7 - (-5)}{1 - (-3)} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ m = \frac{7 + 5}{1 + 3} \][/tex]
[tex]\[ m = \frac{12}{4} \][/tex]
[tex]\[ m = 3 \][/tex]
Therefore, the slope of the line passing through the points [tex]\((-3, -5)\)[/tex] and [tex]\((1, 7)\)[/tex] is [tex]\(3\)[/tex].
Hence, the correct answer is:
(B) 3
Answer:
B. 3
Step-by-step explanation:
To find the slope of a line given two points, we use the slope formula
m = ( y2-y1)/(x2-x1) where the point is given in the form (x,y).
m = (7- -5)/(1 --3)
= (7+5)/(1+3)
= 12/4
= 3