Select the correct answer.

The variable [tex]$f$[/tex] varies inversely as the square root of [tex]$g$[/tex]. When [tex]$f=4$[/tex] and [tex]$g=4$[/tex], Jordan's work finding the value of [tex]$f$[/tex] when [tex]$g=100$[/tex] is shown:
[tex]\[
\begin{array}{r}
f \sqrt{g}=k \\
4 \sqrt{4}=k \\
16=k
\end{array}
\][/tex]
[tex]\[
\begin{array}{r}
f \sqrt{g}=16 \\
f \sqrt{100}=16 \\
10f=16 \\
f=1.6
\end{array}
\][/tex]

What is the first error, if any, in Jordan's work?

A. He used an equation that models direct variation instead of inverse variation.
B. He substituted incorrectly when calculating the constant of variation.
C. He took the square root of the wrong variable.
D. He did not make any errors.



Answer :

Let's go through Jordan's work step by step to identify any errors:

1. The problem states that [tex]\( f \)[/tex] varies inversely as the square root of [tex]\( g \)[/tex]. This can be written mathematically as:
[tex]\[ f \cdot \sqrt{g} = k \][/tex]
where [tex]\( k \)[/tex] is a constant.

2. Jordan starts with the initial values [tex]\( f = 4 \)[/tex] and [tex]\( g = 4 \)[/tex].

3. He correctly uses these values to find the constant [tex]\( k \)[/tex]:
[tex]\[ 4 \cdot \sqrt{4} = k \][/tex]
Solving this:
[tex]\[ 4 \cdot 2 = k \][/tex]
[tex]\[ k = 8 \][/tex]

4. Next, he tries to find the new value of [tex]\( f \)[/tex] when [tex]\( g = 100 \)[/tex]. Using the relationship [tex]\( f \cdot \sqrt{g} = k \)[/tex], with [tex]\( k = 8 \)[/tex]:
[tex]\[ f \cdot \sqrt{100} = 8 \][/tex]
Solving this:
[tex]\[ f \cdot 10 = 8 \][/tex]
[tex]\[ f = \frac{8}{10} \][/tex]
[tex]\[ f = 0.8 \][/tex]

Therefore, the numerical calculations given for finding the new value of [tex]\( f \)[/tex] are correct.

5. However, in Jordan's initial setup before calculating [tex]\( k \)[/tex], he has made a mistake in expressing the inverse variation relationship. The correct relationship for inverse variation should be:
[tex]\[ f = \frac{k}{\sqrt{g}} \][/tex]

Jordan incorrectly uses the relationship as if [tex]\( f \)[/tex] and [tex]\( \sqrt{g} \)[/tex] are directly proportional (i.e., [tex]\( f \cdot \sqrt{g} = \text{constant} \)[/tex]) instead of inversely proportional.

Thus, the first error in Jordan's work is:

A. He used an equation that models direct variation instead of inverse variation.