Select the correct answer.

The square of [tex]\( p \)[/tex] varies inversely as [tex]\( q \)[/tex]. When [tex]\( q = 6 \)[/tex], [tex]\( p = 4 \)[/tex]. What is the value of [tex]\( q \)[/tex] when [tex]\( p = 12 \)[/tex]?

A. [tex]\( \frac{3}{2} \)[/tex]
B. 2
C. 18
D. [tex]\( \frac{2}{3} \)[/tex]



Answer :

The square of [tex]\( p \)[/tex] varies inversely as [tex]\( q \)[/tex], which can be expressed mathematically as:

[tex]\[ p^2 \cdot q = k \][/tex]

where [tex]\( k \)[/tex] is a constant.

First, let's determine the constant [tex]\( k \)[/tex] using the given values [tex]\( q = 6 \)[/tex] and [tex]\( p = 4 \)[/tex]:

[tex]\[ (4)^2 \cdot 6 = k \][/tex]
[tex]\[ 16 \cdot 6 = k \][/tex]
[tex]\[ k = 96 \][/tex]

Now that we know [tex]\( k = 96 \)[/tex], we can find the value of [tex]\( q \)[/tex] when [tex]\( p = 12 \)[/tex]. Using the relationship [tex]\( p^2 \cdot q = k \)[/tex]:

[tex]\[ (12)^2 \cdot q = 96 \][/tex]
[tex]\[ 144 \cdot q = 96 \][/tex]

To find [tex]\( q \)[/tex], we solve for [tex]\( q \)[/tex]:

[tex]\[ q = \frac{96}{144} \][/tex]
[tex]\[ q = \frac{2}{3} \][/tex]

Therefore, the value of [tex]\( q \)[/tex] when [tex]\( p = 12 \)[/tex] is:

[tex]\[ \boxed{\frac{2}{3}} \][/tex]

So, the correct answer is [tex]\( \boxed{\frac{2}{3}} \)[/tex].