To determine the expression for [tex]\(JL\)[/tex], we need to add the given expressions for [tex]\(JM\)[/tex] and [tex]\(LM\)[/tex].
1. Given:
[tex]\[
JM = 5x - 8
\][/tex]
[tex]\[
LM = 2x - 6
\][/tex]
2. We seek the expression for [tex]\(JL\)[/tex]:
[tex]\[
JL = JM + LM
\][/tex]
3. Substitute the expressions for [tex]\(JM\)[/tex] and [tex]\(LM\)[/tex]:
[tex]\[
JL = (5x - 8) + (2x - 6)
\][/tex]
4. Combine like terms:
- Combine the [tex]\(x\)[/tex] terms:
[tex]\[
5x + 2x = 7x
\][/tex]
- Combine the constant terms:
[tex]\[
-8 - 6 = -14
\][/tex]
5. Therefore, the resulting expression is:
[tex]\[
JL = 7x - 14
\][/tex]
So, the correct answer is [tex]\(\boxed{7x - 14}\)[/tex].