If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

To determine the expression for [tex]\(JL\)[/tex], we need to add the given expressions for [tex]\(JM\)[/tex] and [tex]\(LM\)[/tex].

1. Given:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

2. We seek the expression for [tex]\(JL\)[/tex]:
[tex]\[ JL = JM + LM \][/tex]

3. Substitute the expressions for [tex]\(JM\)[/tex] and [tex]\(LM\)[/tex]:
[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

4. Combine like terms:
- Combine the [tex]\(x\)[/tex] terms:
[tex]\[ 5x + 2x = 7x \][/tex]
- Combine the constant terms:
[tex]\[ -8 - 6 = -14 \][/tex]

5. Therefore, the resulting expression is:
[tex]\[ JL = 7x - 14 \][/tex]

So, the correct answer is [tex]\(\boxed{7x - 14}\)[/tex].