Question 4 (5 points)

Solve [tex]4 + 2 \sin x = 14 - 8 \sin x[/tex] for [tex]0^{\circ} \leq x \leq 180^{\circ}[/tex].

A. [tex]0^{\circ}[/tex]

B. [tex]60^{\circ}[/tex]

C. [tex]90^{\circ}[/tex]

D. [tex]45^{\circ}[/tex]



Answer :

To solve the equation [tex]\(4 + 2 \sin x = 14 - 8 \sin x\)[/tex] for [tex]\(0^{\circ} \leq x \leq 180^{\circ}\)[/tex], we can follow these steps:

1. Combine like terms to isolate [tex]\(\sin x\)[/tex]:
[tex]\[ 4 + 2 \sin x = 14 - 8 \sin x \][/tex]

Move [tex]\(8 \sin x\)[/tex] to the left side of the equation by adding [tex]\(8 \sin x\)[/tex] to both sides:
[tex]\[ 4 + 2 \sin x + 8 \sin x = 14 \][/tex]

Simplify:
[tex]\[ 4 + 10 \sin x = 14 \][/tex]

2. Isolate [tex]\(\sin x\)[/tex] on one side of the equation:
Subtract 4 from both sides:
[tex]\[ 10 \sin x = 14 - 4 \][/tex]

Simplify:
[tex]\[ 10 \sin x = 10 \][/tex]

Divide both sides by 10:
[tex]\[ \sin x = 1 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
We need to find the value(s) of [tex]\(x\)[/tex] such that [tex]\(\sin x = 1\)[/tex] within the range [tex]\(0^{\circ} \leq x \leq 180^{\circ}\)[/tex].

Recall that [tex]\(\sin x = 1\)[/tex] at [tex]\(x = 90^{\circ}\)[/tex].

Thus, the solution to the equation [tex]\(4 + 2 \sin x = 14 - 8 \sin x\)[/tex] within the specified range is:

[tex]\[ x = 90^{\circ} \][/tex]