Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[\frac{\sin 50}{\cos 35} + \frac{\cos 30}{\tan 60}\][/tex]
-----

Response:



Answer :

To solve the given expression [tex]\(\frac{\sin 5^\circ}{\cos 35^\circ}+\frac{\cos 30^\circ}{\tan 60^\circ}\)[/tex], we'll break it down into two main components and evaluate them step by step.

Let's denote the expression as:

[tex]\[ E = \frac{\sin 5^\circ}{\cos 35^\circ} + \frac{\cos 30^\circ}{\tan 60^\circ} \][/tex]

### Step 1: Calculate [tex]\(\frac{\sin 5^\circ}{\cos 35^\circ}\)[/tex]
To begin, find the values of [tex]\(\sin 5^\circ\)[/tex] and [tex]\(\cos 35^\circ\)[/tex].

- For [tex]\(\sin 5^\circ\)[/tex]:
[tex]\[ \sin 5^\circ \approx 0.0872 \][/tex]

- For [tex]\(\cos 35^\circ\)[/tex]:
[tex]\[ \cos 35^\circ \approx 0.8192 \][/tex]

Next, compute the ratio:

[tex]\[ \frac{\sin 5^\circ}{\cos 35^\circ} = \frac{0.0872}{0.8192} \approx 0.1064 \][/tex]

### Step 2: Calculate [tex]\(\frac{\cos 30^\circ}{\tan 60^\circ}\)[/tex]
Now, evaluate the cosine and tangent components of the second part:

- For [tex]\(\cos 30^\circ\)[/tex]:
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660 \][/tex]

- For [tex]\(\tan 60^\circ\)[/tex]:
[tex]\[ \tan 60^\circ = \sqrt{3} \approx 1.7321 \][/tex]

Next, compute the ratio:

[tex]\[ \frac{\cos 30^\circ}{\tan 60^\circ} = \frac{0.8660}{1.7321} \approx 0.5000 \][/tex]

### Step 3: Combine the results
Finally, sum the two calculated values:

[tex]\[ \frac{\sin 5^\circ}{\cos 35^\circ} + \frac{\cos 30^\circ}{\tan 60^\circ} \approx 0.1064 + 0.5000 = 0.6064 \][/tex]

Hence, the value of the given expression [tex]\(\frac{\sin 5^\circ}{\cos 35^\circ}+\frac{\cos 30^\circ}{\tan 60^\circ}\)[/tex] is approximately [tex]\(0.6064\)[/tex].