What is the area of a circle whose radius is 4 ft?

A. [tex]$4 \pi \, \text{ft}^2$[/tex]
B. [tex]$8 \pi \, \text{ft}^2$[/tex]
C. [tex]$16 \pi \, \text{ft}^2$[/tex]
D. [tex]$64 \pi \, \text{ft}^2$[/tex]



Answer :

To find the area of a circle, you use the formula:

[tex]\[ \text{Area} = \pi r^2 \][/tex]

where [tex]\( r \)[/tex] is the radius of the circle and [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159.

1. You are given the radius [tex]\( r = 4 \)[/tex] feet.
2. Substitute the radius into the formula:

[tex]\[ \text{Area} = \pi (4)^2 \][/tex]

3. Calculate the square of the radius:

[tex]\[ 4^2 = 16 \][/tex]

4. Multiply this result by [tex]\( \pi \)[/tex]:

[tex]\[ \text{Area} = 16\pi \text{ square feet} \][/tex]

So, the correct answer is:

[tex]\[ 16 \pi \text{ square feet} \][/tex]

Thus, among the given options, the correct one is:

[tex]\[ 16 \pi \, \text{ft}^2 \][/tex]