Type the correct answer in each box. Use numerals instead of words.

The domain of this function is [tex]$\{-12,-6,3,15\}$[/tex].
[tex]$
y=-\frac{2}{3} x+7
$[/tex]

Complete the table based on the given domain.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & [tex]$\square$[/tex] \\
\hline
[tex]$\square$[/tex] & 5 \\
\hline
15 & [tex]$\square$[/tex] \\
\hline
[tex]$\square$[/tex] & 15 \\
\hline
\end{tabular}



Answer :

Let's complete the table based on the function [tex]\( y = -\frac{2}{3} x + 7 \)[/tex] and the given domain [tex]\(\{-12, -6, 3, 15\}\)[/tex].

1. For [tex]\( x = -6 \)[/tex]:
[tex]\[ y = -\frac{2}{3}(-6) + 7 = 4 + 7 = 11 \][/tex]

So, when [tex]\( x = -6 \)[/tex], [tex]\( y = 11 \)[/tex].

2. When [tex]\( y = 5 \)[/tex]:
[tex]\[ 5 = -\frac{2}{3} x + 7 \][/tex]
[tex]\[ \Rightarrow -\frac{2}{3} x = 5 - 7 \][/tex]
[tex]\[ \Rightarrow -\frac{2}{3} x = -2 \][/tex]
[tex]\[ \Rightarrow x = 3 \][/tex]

So, when [tex]\( y = 5 \)[/tex], [tex]\( x = 3 \)[/tex].

3. For [tex]\( x = 15 \)[/tex]:
[tex]\[ y = -\frac{2}{3}(15) + 7 = -10 + 7 = -3 \][/tex]

So, when [tex]\( x = 15 \)[/tex], [tex]\( y = -3 \)[/tex].

4. When [tex]\( y = 15 \)[/tex]:
[tex]\[ 15 = -\frac{2}{3} x + 7 \][/tex]
[tex]\[ \Rightarrow -\frac{2}{3} x = 15 - 7 \][/tex]
[tex]\[ \Rightarrow -\frac{2}{3} x = 8 \][/tex]
[tex]\[ \Rightarrow x = -12 \][/tex]

So, when [tex]\( y = 15 \)[/tex], [tex]\( x = -12 \)[/tex].

The completed table is:
\begin{tabular}{|c|c|}
\hline[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline-6 & 11 \\
\hline 3 & 5 \\
\hline 15 & -3 \\
\hline-12 & 15 \\
\hline
\end{tabular}