? Question

We know that a triangle with side lengths [tex]$x^2 - 1$[/tex], [tex]$2x$[/tex], and [tex][tex]$x^2 + 1$[/tex][/tex] is a right triangle. Using those side lengths, find the missing triples and [tex]$x$[/tex]-values.

Write the triples in parentheses, without spaces between the numbers, and with a comma between numbers. Write the triples in order from least to greatest.

Type the correct answer in each box.

\begin{tabular}{|c|c|}
\hline
[tex]x[/tex]-value & Pythagorean Triple \\
\hline
3 & (4,3,5) \\
\hline
5 & (8,15,17) \\
\hline
\hline
\end{tabular}



Answer :

To solve for the missing triples given that the side lengths are [tex]\( x^2 - 1 \)[/tex], [tex]\( 2x \)[/tex], and [tex]\( x^2 + 1 \)[/tex], for [tex]\( x = 3 \)[/tex] and [tex]\( x = 5 \)[/tex], follow these steps:

1. For [tex]\( x = 3 \)[/tex]
- Calculate the first side length using [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ 3^2 - 1 = 9 - 1 = 8 \][/tex]
- Calculate the second side length using [tex]\( 2x \)[/tex]:
[tex]\[ 2 \cdot 3 = 6 \][/tex]
- Calculate the hypotenuse using [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ 3^2 + 1 = 9 + 1 = 10 \][/tex]
- Arrange the sides in ascending order:
[tex]\[ (6, 8, 10) \][/tex]

2. For [tex]\( x = 5 \)[/tex]
- Calculate the first side length using [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ 5^2 - 1 = 25 - 1 = 24 \][/tex]
- Calculate the second side length using [tex]\( 2x \)[/tex]:
[tex]\[ 2 \cdot 5 = 10 \][/tex]
- Calculate the hypotenuse using [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ 5^2 + 1 = 25 + 1 = 26 \][/tex]
- Arrange the sides in ascending order:
[tex]\[ (10, 24, 26) \][/tex]

With this, we have the following table with the missing values filled in:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex]-value & Pythagorean Triple \\
\hline
3 & [tex]$(6,8,10)$[/tex] \\
\hline
5 & [tex]$(10,24,26)$[/tex] \\
\hline
\end{tabular}

So the correct triples are [tex]\( (6,8,10) \)[/tex] for [tex]\( x = 3 \)[/tex] and [tex]\( (10,24,26) \)[/tex] for [tex]\( x = 5 \)[/tex].