Match the following.

Given:
[tex]\[ D=\{x \mid x \text{ is a whole number}\} \][/tex]
[tex]\[ E=\{x \mid x \text{ is a perfect square } \ \textless \ 100\} \][/tex]
[tex]\[ F=\{x \mid x \text{ is an even number between 10 and 20}\} \][/tex]

1. [tex]\( D \cap E \)[/tex] [tex]\(\square\)[/tex] [tex]\(\{1, 4, 9, 16, 25, 36, 49, 64, 81\}\)[/tex]
2. [tex]\( D \cap F \)[/tex] [tex]\(\square\)[/tex] [tex]\(\{12, 14, 16, 18\}\)[/tex]
3. [tex]\( D \cap (E \cap F) \)[/tex] [tex]\(\square\)[/tex] [tex]\(\{16\}\)[/tex]
4. [tex]\( D \cup (E \cap F) \)[/tex] [tex]\(\square\)[/tex] (all whole numbers)
5. [tex]\( D \cap (E \cup F) \)[/tex] [tex]\(\square\)[/tex] [tex]\(\{1, 4, 9, 16, 25, 36, 49, 64, 81, 12, 14, 18\}\)[/tex]



Answer :

Let's analyze each part separately and match them correctly.

1. [tex]\(D \cap E\)[/tex]: This is the set of elements that are in both [tex]\(D\)[/tex] (whole numbers from 0 to 100) and [tex]\(E\)[/tex] (perfect squares less than 100).
[tex]\[ D \cap E = \{0, 1, 4, 9, 16, 25, 36, 49, 64, 81\} \][/tex]

2. [tex]\(D \cap F\)[/tex]: This is the set of elements that are in both [tex]\(D\)[/tex] (whole numbers from 0 to 100) and [tex]\(F\)[/tex] (even numbers between 10 and 20).
[tex]\[ D \cap F = \{10, 12, 14, 16, 18\} \][/tex]

3. [tex]\(D \cap (E \cap F)\)[/tex]: First, we find [tex]\(E \cap F\)[/tex], which is the set of elements that are both perfect squares less than 100 and even numbers between 10 and 20.
- [tex]\(E \cap F = \{16\}\)[/tex]

Then we take the intersection of this set with [tex]\(D\)[/tex]:
[tex]\[ D \cap (E \cap F) = \{16\} \][/tex]

4. [tex]\(D \cup (E \cap F)\)[/tex]: Using the same [tex]\(E \cap F\)[/tex] from above:
[tex]\[ D \cup (E \cap F) = \text{All whole numbers from 0 to 100} \cup \{16\} = \text{All whole numbers from 0 to 100} \][/tex]

5. [tex]\(D \cap (E \cup F)\)[/tex]: First, we find [tex]\(E \cup F\)[/tex], which is the set of elements that are either perfect squares less than 100 or even numbers between 10 and 20:
- [tex]\(E \cup F = \{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 12, 14, 18\}\)[/tex]

Then we take the intersection of this set with [tex]\(D\)[/tex]:
[tex]\[ D \cap (E \cup F) = \{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 12, 14, 18\} \][/tex]

Matching the answers to their respective options:

1. [tex]\(D \cap E\)[/tex] matches [tex]\(\{0, 1, 4, 9, 16, 25, 36, 49, 64, 81\}\)[/tex].
2. [tex]\(D \cap F\)[/tex] matches [tex]\(\{10, 12, 14, 16, 18\}\)[/tex].
3. [tex]\(D \cap (E \cap F)\)[/tex] matches [tex]\(16\)[/tex].
4. [tex]\(D \cup (E \cap F)\)[/tex] matches "all whole numbers".
5. [tex]\(D \cap (E \cup F)\)[/tex] matches [tex]\(\{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 12, 14, 18\}\)[/tex].

Therefore, the correctly completed matching is:

1. [tex]\(D \cap E\)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(\{0, 1, 4, 9, 16, 25, 36, 49, 64, 81\}\)[/tex]
2. [tex]\(D \cap F\)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(\{10, 12, 14, 16, 18\}\)[/tex]
3. [tex]\(D \cap (E \cap F)\)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(\{16\}\)[/tex]
4. [tex]\(D \cup (E \cap F)\)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(\text{All whole numbers}\)[/tex]
5. [tex]\(D \cap (E \cup F)\)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(\{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 12, 14, 18\}\)[/tex]