8. The value of [tex]$x$[/tex] that satisfies the equation [tex]\frac{4}{3} = \frac{x+10}{15}[/tex] is:

1) -6
2) 5
3) 10
4) 30



Answer :

To solve the equation [tex]\(\frac{4}{3} = \frac{x + 10}{15}\)[/tex] for [tex]\(x\)[/tex], we will follow a series of algebraic steps:

1. Eliminate the fraction on the right-hand side: To do this, we can start by multiplying both sides of the equation by 15. This step helps to clear the denominator on the right-hand side.

[tex]\[ 15 \times \frac{4}{3} = 15 \times \frac{x + 10}{15} \][/tex]

Simplifying the right-hand side, we get:

[tex]\[ 15 \times \frac{4}{3} = x + 10 \][/tex]

2. Simplify the left-hand side: Now we need to calculate the left-hand side.

[tex]\[ 15 \times \frac{4}{3} = \frac{15 \times 4}{3} = \frac{60}{3} = 20 \][/tex]

So the equation now becomes:

[tex]\[ 20 = x + 10 \][/tex]

3. Isolate [tex]\(x\)[/tex]: To isolate [tex]\(x\)[/tex], we need to subtract 10 from both sides.

[tex]\[ 20 - 10 = x + 10 - 10 \][/tex]

Simplifying this, we get:

[tex]\[ 10 = x \][/tex]

Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(\frac{4}{3} = \frac{x + 10}{15}\)[/tex] is [tex]\(x = 10\)[/tex].

Among the given multiple choices, the correct answer is:
3) 10