Find the value of this expression if [tex]$x=-8$[/tex] and [tex]$y=-2$[/tex].

[tex]\frac{x y^2}{7}[/tex]

Enter the correct answer.



Answer :

Sure, let's solve the given expression step-by-step. We are given the expression:

[tex]\[ \frac{x y^2}{7} \][/tex]

with [tex]\( x = -8 \)[/tex] and [tex]\( y = -2 \)[/tex]. Let's proceed with the solution:

1. Calculate [tex]\( y^2 \)[/tex]:
Given [tex]\( y = -2 \)[/tex], squaring [tex]\( y \)[/tex] gives us:
[tex]\[ y^2 = (-2)^2 = 4 \][/tex]

2. Multiply [tex]\( x \)[/tex] and [tex]\( y^2 \)[/tex]:
With [tex]\( x = -8 \)[/tex] and [tex]\( y^2 = 4 \)[/tex], we multiply these values:
[tex]\[ x \cdot y^2 = -8 \cdot 4 = -32 \][/tex]

3. Divide the result by 7:
We now take the result from the multiplication and divide it by 7:
[tex]\[ \frac{-32}{7} = -4.571428571428571 \][/tex]

Thus, the value of the expression [tex]\( \frac{x y^2}{7} \)[/tex] when [tex]\( x = -8 \)[/tex] and [tex]\( y = -2 \)[/tex] is:

[tex]\[ -4.571428571428571 \][/tex]