MISSED THIS? Watch KCV: Limiting Reactant, Theoretical Yield, and Percent Yield, IWE: Limiting Reactant and Theoretical Yield; Read Section 4.4. You can click on the Review link to access the section in your eText.

For the reaction:
[tex]\[ Ti (s) + 2 F_2 (g) \rightarrow TiF_4 (s) \][/tex]

Compute the theoretical yield of the product (in grams) for each of the following initial amounts of reactants:

Part A

[tex]\[ 7.0 \, \text{g Ti} \quad 7.0 \, \text{g } F_2 \][/tex]

Express your answer using two significant figures:
[tex]\[ m = 11 \, \text{g} \][/tex]

Submit

The limiting reagent of this reaction is [tex]\( F_2 \)[/tex] as it only yields 11.4 g of TiF_4.



Answer :

To determine the theoretical yield for the reaction

[tex]\[ \text{Ti (s)} + 2\text{F}_2\text{(g)} \rightarrow \text{TiF}_4\text{(s)} \][/tex]

with initial amounts of 7.0 grams of titanium (Ti) and 7.0 grams of fluorine gas (F[tex]\(_2\)[/tex]), follow these steps:

### Step 1: Determine the Moles of Each Reactant

Moles of Ti:
1. Find the molar mass of Ti, which is 47.867 g/mol.
2. Use the given mass of Ti, which is 7.0 grams.
3. Calculate the moles of Ti:
[tex]\[ \text{moles of Ti} = \frac{7.0 \text{ g}}{47.867 \text{ g/mol}} \approx 0.146 \text{ moles} \][/tex]

Moles of F[tex]\(_2\)[/tex]:
1. Find the molar mass of F[tex]\(_2\)[/tex]. Note that each fluorine atom has a molar mass of 18.9984 g/mol, so:
[tex]\[ \text{molar mass of F}_2 = 2 \times 18.9984 \text{ g/mol} = 37.9968 \text{ g/mol} \][/tex]
2. Use the given mass of F[tex]\(_2\)[/tex], which is 7.0 grams.
3. Calculate the moles of F[tex]\(_2\)[/tex]:
[tex]\[ \text{moles of F}_2 = \frac{7.0 \text{ g}}{37.9968 \text{ g/mol}} \approx 0.184 \text{ moles} \][/tex]

### Step 2: Determine the Limiting Reactant

The balanced chemical equation shows that 1 mole of Ti reacts with 2 moles of F[tex]\(_2\)[/tex]:

- For Ti:
[tex]\[ \text{Moles of Ti} = 0.146 \text{ moles} \][/tex]
- For F[tex]\(_2\)[/tex]:
[tex]\[ \text{Moles of Ti that can react} = \frac{\text{moles of F}_2}{2} = \frac{0.184 \text{ moles}}{2} = 0.092 \text{ moles} \][/tex]

Since 0.092 moles (derived from F[tex]\(_2\)[/tex]) < 0.146 moles (derived from Ti), F[tex]\(_2\)[/tex] is the limiting reactant.

### Step 3: Calculate the Theoretical Yield of TiF[tex]\(_4\)[/tex]

The theoretical yield is based on the limiting reactant, F[tex]\(_2\)[/tex]:

1. Each mole of F[tex]\(_2\)[/tex] produces [tex]\( \frac{1}{2} \)[/tex] mole of TiF[tex]\(_4\)[/tex].
2. Therefore, the moles of TiF[tex]\(_4\)[/tex] produced:
[tex]\[ \text{Moles of TiF}_4 = 0.092 \text{ moles} \][/tex]
3. Find the molar mass of TiF[tex]\(_4\)[/tex]:
[tex]\[ \text{molar mass of TiF}_4 = 123.886 \text{ g/mol} \][/tex]
4. Calculate the mass of TiF[tex]\(_4\)[/tex]:
[tex]\[ \text{Mass of TiF}_4 = \text{moles of TiF}_4 \times \text{molar mass of TiF}_4 = 0.092 \text{ moles} \times 123.886 \text{ g/mol} \approx 11.4 \text{ grams} \][/tex]

### Final Answer:

The theoretical yield of TiF[tex]\(_4\)[/tex] is 11 grams, expressed to two significant figures. Therefore:

[tex]\[ m = 11 \text{ grams} \][/tex]