Answer :
Sure, let's analyze the given problem step-by-step to determine which of the given options is equivalent to the expression [tex]\(\left(-7 x^3\right)^2\)[/tex].
Given:
[tex]\[ \left(-7 x^3\right)^2 \][/tex]
Step 1: Understand the properties of exponents.
Recall that when you raise a product to a power, you raise each factor in the product to that power. More specifically:
[tex]\[ (a \cdot b)^n = a^n \cdot b^n \][/tex]
and additionally, raising a power to another power means you multiply the exponents:
[tex]\[ (x^a)^b = x^{a \cdot b} \][/tex]
Step 2: Apply these properties to the given expression.
Start with the expression:
[tex]\[ \left(-7 x^3\right)^2 \][/tex]
Step 3: Raise each factor inside the parentheses to the power of 2.
[tex]\[ (-7)^2 \cdot (x^3)^2 \][/tex]
Step 4: Calculate the powers separately.
[tex]\[ (-7)^2 = 49 \][/tex]
[tex]\[ (x^3)^2 = x^{3 \cdot 2} = x^6 \][/tex]
Step 5: Combine the results.
[tex]\[ 49 \cdot x^6 = 49 x^6 \][/tex]
Therefore, the expression [tex]\(\left(-7 x^3\right)^2\)[/tex] simplifies to:
[tex]\[ 49 x^6 \][/tex]
So the correct answer is:
(3) [tex]\(49 x^6\)[/tex]
Given:
[tex]\[ \left(-7 x^3\right)^2 \][/tex]
Step 1: Understand the properties of exponents.
Recall that when you raise a product to a power, you raise each factor in the product to that power. More specifically:
[tex]\[ (a \cdot b)^n = a^n \cdot b^n \][/tex]
and additionally, raising a power to another power means you multiply the exponents:
[tex]\[ (x^a)^b = x^{a \cdot b} \][/tex]
Step 2: Apply these properties to the given expression.
Start with the expression:
[tex]\[ \left(-7 x^3\right)^2 \][/tex]
Step 3: Raise each factor inside the parentheses to the power of 2.
[tex]\[ (-7)^2 \cdot (x^3)^2 \][/tex]
Step 4: Calculate the powers separately.
[tex]\[ (-7)^2 = 49 \][/tex]
[tex]\[ (x^3)^2 = x^{3 \cdot 2} = x^6 \][/tex]
Step 5: Combine the results.
[tex]\[ 49 \cdot x^6 = 49 x^6 \][/tex]
Therefore, the expression [tex]\(\left(-7 x^3\right)^2\)[/tex] simplifies to:
[tex]\[ 49 x^6 \][/tex]
So the correct answer is:
(3) [tex]\(49 x^6\)[/tex]