Q8. If the radius of an atom is [tex]$2 \AA$[/tex] and the ratio of the radius of the nucleus to that of the atom is [tex]$y \times 10^{-15}$[/tex], then the value of [tex]$y$[/tex] is:

1. 4
2. 8



Answer :

To solve the problem, we will break it down step-by-step, based on the information given:

1. Given Information:
- The radius of the atom is [tex]\(2 \, \text{Å}\)[/tex] (Angstroms).
- The radius of the nucleus is related to the radius of the atom by a factor of [tex]\(y \times 10^{-15}\)[/tex].

2. Determining the Radius of the Nucleus:
The radius of the nucleus is obtained by multiplying the radius of the atom by the given factor [tex]\(y \times 10^{-15}\)[/tex]:
[tex]\[ \text{Radius of the nucleus} = 2 \, \text{Å} \times (10^{-15}) \][/tex]
Simplifying this, we get:
[tex]\[ \text{Radius of the nucleus} = 2 \times 10^{-15} \, \text{Å} \][/tex]

3. Possible Values for [tex]\(y\)[/tex]:
We need to determine which of the given choices for [tex]\(y\)[/tex] results in the correct radius of the nucleus:
- Option 1: [tex]\(y = 4\)[/tex]
- Option 2: [tex]\(y = 8\)[/tex]

4. Checking Each Option:
Let's test each option to see if it satisfies the given conditions:
- If [tex]\(y = 4\)[/tex]:
[tex]\[ \text{Radius of the nucleus} = 4 \times 10^{-15} \, \text{Å} \][/tex]
This does not match [tex]\(2 \times 10^{-15} \, \text{Å}\)[/tex], so [tex]\(y\)[/tex] cannot be 4.

- If [tex]\(y = 8\)[/tex]:
[tex]\[ \text{Radius of the nucleus} = 8 \times 10^{-15} \, \text{Å} \][/tex]
This also does not match [tex]\(2 \times 10^{-15} \, \text{Å}\)[/tex], so [tex]\(y\)[/tex] cannot be 8 either.

Thus, neither of the given options correctly fits the condition for the nucleus radius based on the problem's description. Therefore, the answer for this problem is:
[tex]\[ \boxed{\text{None}} \][/tex]