Sure, let's solve the problem step-by-step.
Given the expression:
[tex]\[
\frac{u-8}{u+1}-\frac{-7u+4}{u+1}
\][/tex]
Since both fractions have the same denominator [tex]\(u + 1\)[/tex], we can combine them into a single fraction:
[tex]\[
\frac{(u-8) - (-7u+4)}{u+1}
\][/tex]
Now, we simplify the numerator:
[tex]\[
(u - 8) - (-7u + 4) = u - 8 + 7u - 4
\][/tex]
Combine like terms in the numerator:
[tex]\[
u + 7u - 8 - 4 = 8u - 12
\][/tex]
So we now have:
[tex]\[
\frac{8u - 12}{u+1}
\][/tex]
This is the simplified form of the original expression. Therefore, the correct answer is:
[tex]\[
\frac{8u-12}{u+1}
\][/tex]
Click on the correct answer:
[tex]\[
\boxed{\frac{8u-12}{u+1}}
\][/tex]