## Answer :

1. [tex]\(a + b > c\)[/tex]

2. [tex]\(a + c > b\)[/tex]

3. [tex]\(b + c > a\)[/tex]

Let's denote the unknown side by [tex]\(x\)[/tex]. We will now apply the triangle inequality theorem:

1. [tex]\(10 + 16 > x\)[/tex]

[tex]\[ 26 > x \][/tex]

[tex]\[ x < 26 \][/tex]

2. [tex]\(10 + x > 16\)[/tex]

[tex]\[ x > 16 - 10 \][/tex]

[tex]\[ x > 6 \][/tex]

3. [tex]\(16 + x > 10\)[/tex]

[tex]\[ x > 10 - 16 \][/tex]

This inequality is also covered by [tex]\(x > 6\)[/tex].

Taking all these inequalities together, the range of possible values for [tex]\(x\)[/tex] is:

[tex]\[ 6 < x < 26 \][/tex]

Therefore, the best description of the range of possible values for the third side [tex]\(x\)[/tex] of the triangle is:

[tex]\[ \boxed{6 < x < 26} \][/tex]