Sure, let’s break down each expression step-by-step to remove the brackets:
### Part (a): [tex]\(3x - (2y + z)\)[/tex]
1. Start with the expression [tex]\(3x - (2y + z)\)[/tex].
2. Distribute the negative sign through the parentheses:
[tex]\[
3x - 2y - z
\][/tex]
3. The expression without brackets is:
[tex]\[
3x - 2y - z
\][/tex]
### Part (b): [tex]\(-x + 3(y - 2z)\)[/tex]
1. Start with the expression [tex]\(-x + 3(y - 2z)\)[/tex].
2. Distribute the [tex]\(3\)[/tex] through the parentheses:
[tex]\[
-x + 3y - 3 \cdot 2z
\][/tex]
3. Simplify the multiplication inside the expression:
[tex]\[
-x + 3y - 6z
\][/tex]
4. The expression without brackets is:
[tex]\[
-x + 3y - 6z
\][/tex]
So, the final expressions with the brackets removed are:
(a) [tex]\(3x - 2y - z\)[/tex]
(b) [tex]\(-x + 3y - 6z\)[/tex]