How many moles of [tex]$Ba \left( NO_3 \right)_2$[/tex] are there in 0.25 L of a [tex]$2.00 M$[/tex] [tex]$Ba \left( NO_3 \right)_2$[/tex] solution? Use [tex]\text{molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}[/tex].

A. 0.13 mol
B. 0.50 mol
C. 2.25 mol
D. 8.0 mol



Answer :

To find out how many moles of [tex]\( Ba(NO_3)_2 \)[/tex] are in 0.25 L of a 2.00 M [tex]\( Ba(NO_3)_2 \)[/tex] solution, we need to use the formula for molarity, which is defined as:

[tex]\[ \text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]

Given:
- Molarity ([tex]\(M\)[/tex]) of the solution is 2.00 M
- Volume ([tex]\(V\)[/tex]) of the solution is 0.25 L

We can rearrange the formula to solve for the moles of solute:

[tex]\[ \text{moles of solute} = \text{Molarity} \times \text{liters of solution} \][/tex]

Plugging in the given values:

[tex]\[ \text{moles of solute} = 2.00 \, \text{M} \times 0.25 \, \text{L} \][/tex]

[tex]\[ \text{moles of solute} = 0.50 \, \text{moles} \][/tex]

Thus, there are [tex]\(0.50\)[/tex] moles of [tex]\( Ba(NO_3)_2 \)[/tex] in the 0.25 L of the 2.00 M [tex]\( Ba(NO_3)_2 \)[/tex] solution.

Therefore, the correct answer is [tex]\( \boxed{0.50 \, \text{mol}} \)[/tex].