Find the non-permissible value for [tex][tex]$n$[/tex][/tex] in this expression:

[tex]\frac{n-8}{n-8}[/tex]

Enter the correct answer.



Answer :

To determine the nonpermissible replacement for [tex]\( n \)[/tex] in the expression
[tex]\[ \frac{n-8}{n-8}, \][/tex]
we need to find the values of [tex]\( n \)[/tex] that make the denominator equal to zero. Division by zero is undefined, hence these are the values for which the expression is undefined.

Here's the step-by-step process:

1. Identify the denominator of the expression:
[tex]\[ n - 8 \][/tex]

2. Set the denominator equal to zero to find the critical values:
[tex]\[ n - 8 = 0 \][/tex]

3. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = 8 \][/tex]

So, the expression [tex]\(\frac{n-8}{n-8}\)[/tex] is undefined when [tex]\( n \)[/tex] is 8. Thus, the nonpermissible replacement for [tex]\( n \)[/tex] is:

[tex]\[ \boxed{8} \][/tex]