Answer :

Sure, let's solve the expression step by step.

We need to evaluate:

[tex]\[ -\sqrt{144} - \sqrt{-100} + \sqrt{16} + \sqrt{-1} \][/tex]

### Step 1: Evaluate [tex]\(-\sqrt{144}\)[/tex]
[tex]\[ \sqrt{144} = 12 \quad \text{since} \quad 12^2 = 144 \][/tex]
Thus,
[tex]\[ -\sqrt{144} = -12 \][/tex]

### Step 2: Evaluate [tex]\(\sqrt{-100}\)[/tex]
The square root of a negative number involves imaginary numbers. By definition,
[tex]\[ \sqrt{-100} = \sqrt{100} \cdot \sqrt{-1} \][/tex]
We know that
[tex]\[ \sqrt{100} = 10 \quad \text{since} \quad 10^2 = 100 \][/tex]
And
[tex]\[ \sqrt{-1} = i \quad \text{(where \(i\) is the imaginary unit)} \][/tex]
Thus,
[tex]\[ \sqrt{-100} = 10i \][/tex]

### Step 3: Evaluate [tex]\(\sqrt{16}\)[/tex]
[tex]\[ \sqrt{16} = 4 \quad \text{since} \quad 4^2 = 16 \][/tex]

### Step 4: Evaluate [tex]\(\sqrt{-1}\)[/tex]
As previously mentioned,
[tex]\[ \sqrt{-1} = i \][/tex]

### Step 5: Combine the terms
Now we combine the evaluated terms:
[tex]\[ -\sqrt{144} - \sqrt{-100} + \sqrt{16} + \sqrt{-1} \][/tex]

Substituting the values we calculated:
[tex]\[ -12 - 10i + 4 + i \][/tex]

### Step 6: Simplify the expression
Combine the real parts and the imaginary parts separately:
[tex]\[ (-12 + 4) + (-10i + i) \][/tex]

Calculate the real part:
[tex]\[ -12 + 4 = -8 \][/tex]

Calculate the imaginary part:
[tex]\[ -10i + i = -9i \][/tex]

### Final Expression:
Combining both parts, we get:
[tex]\[ -8 - 9i \][/tex]

Therefore, the result of the expression is:
[tex]\[ \boxed{-8 - 9i} \][/tex]