Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$12 e+2 \frac{3}{4} \sqrt{19}$[/tex]
-----

Response:
Evaluate the expression:

[tex]\[ 12e + 2 \frac{3}{4} \sqrt{19} \][/tex]



Answer :

To solve the expression [tex]\(12e + 2 + \frac{3}{4} \sqrt{19}\)[/tex], let's break it down step-by-step:

1. Calculate [tex]\(12e\)[/tex]:
The constant [tex]\(e\)[/tex] (Euler's number) is approximately 2.71828. Thus,
[tex]\[ 12e \approx 12 \times 2.71828 = 32.61938194150854 \][/tex]

2. Add the constant term 2:
The next term in the expression is 2. So, we have:
[tex]\[ 32.61938194150854 + 2 = 34.61938194150854 \][/tex]

3. Calculate [tex]\(\frac{3}{4} \sqrt{19}\)[/tex]:
First, find the square root of 19, which is approximately 4.3589. Multiply this by [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \sqrt{19} \approx 4.3589 \][/tex]
[tex]\[ \frac{3}{4} \sqrt{19} \approx \frac{3}{4} \times 4.3589 = 3.2691742076555057 \][/tex]

4. Add [tex]\(\frac{3}{4} \sqrt{19}\)[/tex] to the previous result:
Combine the values obtained in steps 2 and 3:
[tex]\[ 34.61938194150854 + 3.2691742076555057 = 37.888556149164046 \][/tex]

Therefore, the value of the expression [tex]\(12e + 2 + \frac{3}{4} \sqrt{19}\)[/tex] is approximately:
[tex]\[ \boxed{37.888556149164046} \][/tex]