Solve for [tex]x[/tex]:

[tex]\[3x = 6x - 2\][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Points]
DETAILS
MY NOTES
OSELEMALG2 7.6.336.
Ive. (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION.
[tex]$
(p-7)(p+3)=-9
$[/tex]
[tex]$\square$[/tex]
Additional Materials
eBook
-----

Response:

Solve for [tex]p[/tex]. Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION.

[tex]\[(p - 7)(p + 3) = -9\][/tex]



Answer :

To solve the equation [tex]\((p - 7)(p + 3) = -9\)[/tex], follow these steps:

1. Expand the left-hand side:

First, let's expand the product [tex]\((p - 7)(p + 3)\)[/tex].
[tex]\[ (p - 7)(p + 3) = p(p + 3) - 7(p + 3) \][/tex]
Simplifying this, we get:
[tex]\[ = p^2 + 3p - 7p - 21 \][/tex]
Combining like terms:
[tex]\[ = p^2 - 4p - 21 \][/tex]

2. Set the equation equal to [tex]\(-9\)[/tex]:

Now, we set this expanded equation equal to [tex]\(-9\)[/tex]:
[tex]\[ p^2 - 4p - 21 = -9 \][/tex]

3. Move all terms to one side to set the equation to 0:

Add 9 to both sides to get a standard quadratic equation:
[tex]\[ p^2 - 4p - 21 + 9 = 0 \][/tex]
Simplifying further:
[tex]\[ p^2 - 4p - 12 = 0 \][/tex]

4. Factor the quadratic equation:

Next, we need to factor the quadratic equation [tex]\(p^2 - 4p - 12\)[/tex]. We look for two numbers that multiply to [tex]\(-12\)[/tex] and add to [tex]\(-4\)[/tex]. These numbers are [tex]\(-6\)[/tex] and [tex]\(2\)[/tex]:
[tex]\[ p^2 - 4p - 12 = (p - 6)(p + 2) = 0 \][/tex]

5. Solve for [tex]\(p\)[/tex]:

Set each factor to zero and solve for [tex]\(p\)[/tex]:
[tex]\[ p - 6 = 0 \quad \text{or} \quad p + 2 = 0 \][/tex]
Solving these:
[tex]\[ p = 6 \quad \text{or} \quad p = -2 \][/tex]

Therefore, the solutions to the equation [tex]\((p - 7)(p + 3) = -9\)[/tex] are [tex]\(p = 6\)[/tex] and [tex]\(p = -2\)[/tex].

Thus, the final answer is:
[tex]\[ \boxed{6, -2} \][/tex]